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• UnmannedAerial Vehicle (UAV) offers a
fast and reliable survey methodology.

• UAVused for AnthropogenicMarine De-
bris (AMD) monitoring

• Spatial resolution achieved allowed to
detect high percentage of AMD on the
shores.

• Deep-learning based software automat-
ically detects and quantifies AMD.
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Anthropogenic Marine Debris (AMD) is one of the major environmental issues of our planet to date, and plastic
accounts for 80% of total AMD. Beaches represent one of themainmarine compartmentwhereAMDaccumulates,
but few and scattered regional assessments are available from literature reporting quantitative estimation of
AMD distributed on the shorelines. However, accessing information on the AMD accumulation rate on beaches,
and the associated spatiotemporal oscillations, would be crucial to refining global estimation on the dispersal
mechanisms.
In our work, we address this issue by proposing an ad-hocmethodology for monitoring and automatically quan-
tifying AMD, based on the combined use of a commercial Unmanned Aerial Vehicle (UAV) (equipped with an
RGB high-resolution camera) and a deep-learning based software (i.e.: PlasticFinder). Remote areas were mon-
itored by UAV and were inspected by operators on the ground to check and to categorise all AMD dispersed on
the beach. The high-resolution images obtained from UAV allowed to visually detect a percentage of the objects
on the shores higher than 87.8%, thus providing suitable images to populate training and testing datasets, as well
as gold standards to evaluate the software performance. PlasticFinder reached a Sensitivity of 67%,with a Positive
Predictive Value of 94%, in the automatic detection of AMD, but a limitation was found, due to reduced sunlight
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conditions, thus restricting to the use of the software in its present version. We, therefore, confirmed the effi-
ciency of commercial UAVs as tools for AMD monitoring and demonstrated - for the first time - the potential
of deep learning for the automatic detection and quantification of AMD.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Environmental contamination generated by Anthropogenic Marine-
Debris (AMD) represents one of the most ubiquitous and long-lasting
environmental change of our planet (Laist, 1987; Ryan, 2015). AMD is
responsible of several ecological, ecotoxicological, economic and social
impacts. However, the extent to which it is harmingwildlife and plants,
endangering human health and reducing the availability of ecosystem
good and services (Laist, 1987; Rochman et al., 2013; Hengstmann
et al., 2017) is still to be properly understood and quantified (Eriksen
et al., 2014; Thompson et al., 2009). It has been estimated that from 5
to 13 million tonnes of litter enter the oceans each year (Jambeck
et al., 2015; Geyer et al., 2017) and that plastic accounts for over 80%
of the total AMD (UNEP, 2005; Laist, 2011; Thiel et al., 2013; Penca,
2018).

Plastic is persistent and for the most part (roughly 60%) less dense
than seawater (Andrady, 2011; Ryan et al., 2009). Once introduced
into the marine environment from multiple sources (both sea- and
land-based), buoyant plastic can be transported by surface currents
and winds (Kako et al., 2010), recaptured by shorelines (Kako et al.,
2014) or degraded into microplastic (Barnes et al., 2009; Cinner et al.,
2018). Distribution and accumulation of plastic into the marine envi-
ronment are indeed controlled by circulation patterns and prevailing
winds, coastal and seafloor geomorphology (Barnes et al., 2009;
Galgani et al., 2000; Savini et al., 2014) and anthropogenic activities
(Ramirez-Llodra et al., 2013). Well known hotspots of accumulation in-
clude the sea surface, where aggregations of a large amount of persis-
tent and light plastic take place at ocean gyres, creating giant
“garbage-patches” (Eriksen et al., 2014; Law et al., 2010, 2014), but
also submarine canyons, where litter originating from land accumulates
in large quantities (Pierdomenico et al., 2019) and the shores, particu-
larly beaches (Corcoran et al., 2009). Although data documenting the
occurrence of plastic everywhere in the oceans (from the surface to
the deep seafloor - Thompson et al., 2004 and Van Cauwenberghe
et al., 2013) are quite exhaustive, a consistent quantification of the
total amount accumulated within the diverse marine compartments,
has not been accurately outlined. While reliable estimations have been
provided for the giant surface garbage-patches (Lebreton et al., 2018;
Eriksen et al., 2014), scarce information is available from the deep and
poorly unexplored seafloor, but nonetheless for the shorelines, where
only a few and scattered regional assessments were provided (Martin
et al., 2018; Vlachogianni et al., 2018; Andrades et al., 2016;
Ebbesmeyer et al., 2012). Plastic accumulation on beaches may repre-
sent the terminal phase of oceanic transport or a transient stage with
a successive washed to the sea following storms or tides movements
(e.g. Shimizu et al., 2008). Knowing the accumulation rate on beaches
and associated spatiotemporal oscillations would be a crucial informa-
tion to refine global estimation on the dispersal mechanisms of plastic
in the marine environment and its amount in each compartment.
Most of our knowledge on the quantity of plastic accumulated on
beaches, at different temporal scales, is based on sparse and regional
monitoring activities, performed followingdifferent protocols andwith-
out standardized procedures,makingdifficult data integration and com-
parisons among regions (e.g. Galgani et al., 2015; Watts et al., 2017).
Beach litter estimation, at places performed within the framework of
dedicated monitoring activities (among others the Marine Strategy
Framework Directive - Directive 2008/56/EC – Galgani et al., 2014), is
also commonly subjective and time-labour consuming, since it relies
on visual census where items are recorded along transects (Lavers
et al., 2016; Lavers and Bond, 2017). Only recently the use of aerial im-
agery has been proved to be an appropriate and efficient method to
monitor beach litter (Kako et al., 2012; Kataoka et al., 2018; Sha et al.,
2018; Deidun et al., 2018). In particular, the use of UnmannedAerial Ve-
hicles (UAVs) equipped with RGB cameras, beside the advantage of the
low-cost, allows the collection of high resolution imagery data (i.e.: at
centimetre level - Casella et al., 2016; Flynn and Chapra, 2014) over
quite large areas (e.g. hundreds of hectares), also not easily accessible,
with great flexibility in terms of time and frequency of data collection
(i.e. decades of hectares per day), and under conditions where satellites
would be of limited use (i.e.: high cloud cover, limited image resolu-
tion). Nevertheless, estimation of beach litter from RGB imagery of var-
ious sources (UAVs included), over large and even remote areas, still
requires standardization of sampling techniques and data processing.
Also, objective identification of plastic items on aerial imagery, based
on automatic image classification is a novel field of investigation. To
the best of our knowledge, only one work has been recently published
on the use of UAV Remote Sensing combined to Artificial Intelligence
(AI) for beach-litter monitoring by Martin et al. (2018). They proved
the ability of machine learning (ML) in performing less time-labour
consuming (40 times faster than humans) and subjective methodolo-
gies to detect AMD, but the best sensitivity reported in Martin et al.
(2018) for AMD automatic quantification was low (i.e.: 44%).

In our study, we therefore focused on the improvement of the sensi-
tivity of the AI algorithm and the associated positive predicted values,
which account for the false positive AMD. For this purpose, we provided
a deep learning, rather than a random-forest, machine-learning ap-
proach, as previously implemented by Martin et al. (2018), being deep
learning more beneficial for object detection (LeCun et al., 2015;
Chollet, 2017; Guest et al., 2018). An essential output of our work is, in
addition, the formulation of a combination of protocols to automatically
detect and quantify beach litter along the shores of selected remote
islands in the Republic of Maldives, defined by the 2010 UNPD's Assess-
ment of Development Results a vulnerable “Small Island Developing
State (SIDS)”. The protection of the environment from pollution is in-
deed extremely important for SIDS as, aside from other reasons that
are common to all countries, two important industries (tourism and
fisheries) depend on a pristine environment (UNEP, 1999).

Our study proposes an ad-hoc combination of protocols to: 1) collect
UAV-images suitable for the training of a deep-learning algorithm,
2) provide smart gold standards to estimate the algorithm perfor-
mances, 3) train and test the deep-learning algorithm in near real-
time conditions. We believe that our work could be useful to propose
new best-practices for applying deep learning to automate the proce-
dure of litter detection and quantification by UAV systems on beaches,
which in turn could offer an instrumental tool for sustainable solid
waste management.

2. Materials and methods

2.1. Study area

The case-study area consists of different islands of the Republic of
Maldives (Fig. 1a), an archipelago composed of 1192 atoll islands
stretched for 860 km, in North-South direction, located in the middle
of the Indian Ocean. The islands are grouped in 20 administrative atolls
and divided under three distinct categories: inhabited, uninhabited and



Fig. 1. Geographic location of the study area, Republic of Maldives (a.), Alif Dhaalu and Faafu Atolls (b.), and islands selected as testing sites (c.): 1 En'Boodhoo, 2 Jinnathuga, 3 Adangau.

Fig. 2. Debris accumulation in the Maldives: (a) one of the ferries port in Malè (capital city) with evident accumulation of plastic bottles released in the ocean from the boats or from the
streets of the city; (b) Litter and plastic debris accumulated near the shore of Thilafushi, the only landfill island of the archipelago; (c, d) plastic waste deposited by the high tide on the
beach of Adangau; (e, f) plastic waste deposited in the bushes and on the shores of En'Boodhoo.
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resort islands (Fallati et al., 2017). The archipelago,with its peculiar geo-
graphical location and its 644 km of coastline, represents the perfect
place for the deposition of plastic debris that are drifted from the surface
currents of the Indian Ocean (Barnes, 2004). In addition, local sources of
littering are represented by the waste production on the inhabited
islands and those discharged into the sea from the numerous boats
that daily cross the atolls. In the Maldives, the high dispersion of land
mass and population, both of them spread over a distance of 860 km,
creates a negative effect on solidwastemanagement issue.With the ex-
ception of resort islands, which represent the 6% of the total archipelago
surface and where beach clean-up is a daily routine operated by resort
employees,most part of the coastline of eachMaldivian island, is indeed
covered, to an undefined extent, by AMD coming from different sources
(Fig. 2).

As testing regions for our study, we selected three different
coastal areas. Two of these islands (Adangau and Jinnathuga) are
in Faafu Atoll, one (En'Boodhoo) is in Alif Dhaalu Atoll (Fig. 1b, c).
The three islands were chosen as representatives of small-size
uninhabited islands of the archipelago, where beach-cleaning can-
not be guaranteed by resort employees or government personnel.
En'Boodhoo is an island of 1.8 ha, located in the western lagoon of
Alif Dhaalu Atoll. The island is desert, and the human presence is
mainly related to the safari boats that stop nearby, and to touristic
picnic and barbeques on the beach. Adangau (1.1 ha) and
Jinnathuga (1.9 ha) are two islands of Faafu Atoll located in the
Atoll's eastern lagoon. These two are similarly used as picnic island
from the inhabitants of the Atoll. The primary sources of litter on
these islands are both the direct release of waste and oceanic trans-
port. The target testing area within the islands was selected as a
portion of the beach with direct access to the sea, different exposi-
tion to the winds and currents, with the presence of psammophytes
plants and natural debris (leaves, roots and twigs) as well as litter.

2.2. Aerial surveys

2.2.1. UAV
In order to achieve large-scale reproducibility of a protocol to collect

UAV images,we propose to use a consumer-gradeUAV, equippedwith a
high-resolution RGB camera, to survey the study area. For this purpose,
we used the DJI Phantom 4 drone, a quadcopter with high sensing qual-
ities, equipped with a 1/2.3″ CMOS camera sensor (12.4 MP) that can
collect images with a resolution (R) of 4000 × 3000 pixels and an inte-
grated GPS/GLONASS system. Compared to fixed-wing UAVs, that can
cover with a single flight a larger area and can handle a higher quality
camera, Phantom 4 is lightweight, easy to carry, and can smoothly fly
at low altitude to obtain good ground-resolution images. Moreover,
easy take off and landing procedures make this drone an outstanding,
cost-effective solution for low altitude and short-range studies. All the
metadata are recorded in an EXIF (Exchangeable Image File Format)
file, which includes information on the pictures such as shutter speed,
apertures, ISO and GPS coordinates (latitude, longitude and altitude).
Flight time with a single battery is roughly 25 min.

2.2.2. UAV survey protocols
Three different altitudes, namely 10, 15 and 35mwere considered to

define the optimal protocol in terms of image quality and number of im-
ages required to cover the area of interest (AOI):

1) ground sample distance (GSD) being defined as:

GSD mm=pix ¼ SW � FH
FL� IW

where SW is the sensorwidth, FH is the flight high, FL is the focal length
of the camera, and IW is the image width (Ventura et al., 2018), and
2) number of images of interest (IOI) being defined as:

IOI ¼ AOI m2
� �

D m2½ � ¼ AOI m2
� �

R pixels2
h i

GSD2 m2=pixels2
h i

where D is the dimension of the area covered by a single image at a spe-
cific GSD, and R is the resolution in terms of pixel of the images, as de-
fined in Section 2.2.1.

The surveys were planned using DJI GS PRO (www.dji.com/it/
ground-station-pro) a free Ipad application released by DJI. This app al-
lows designing all the aspects of the drone mission: generate optimal
flight paths, set camera parameters and directly monitor data acquisi-
tion on the Ipad screen. For all the surveys we set a fix flight altitude
with a frontal and lateral overlap of 80% and 70%, respectively, a −90°
gimbal angle (nadir orientation), a shooting interval of 2 s (equal time
interval mode) and a constant velocity of 1.3 m/s. Before starting the
UAV overflight weather condition (wind speed, cloud coverage) and
the presence of obstacles along the path was checked. A metric tape
was laid on the beach (e.g. for severalmeters), in order to check the spa-
tial accuracy of the orthomosaic during the postprocessing. Once all the
parameters were set, the UAV automatically took off and completed the
mission (e.g. trajectory in Fig. 3a, b).

2.2.3. Reconstruction of the AOI
The images were processed by Agisoft PhotoScan (www.agisoft.

com), a commercial Structure from Motion (SfM) software, widely
used by the scientific community for its user-friendly interface, sponta-
neous workflow and the excellent quality of the point cloud output
(Burns and Delparte, 2017; Cook, 2017; Bonali et al., 2019). The process
is dived in three main steps (Fig. 3c): drone photos alignment using
high accuracy setting; high-quality dense 3D point cloud generation;
creation of a Digital Terrain Model (DTM) from the dense could. As
final outputs we obtained, from the DTM, orthomosaics with a GSD of
4.4mm/px, 8.2mm/pix and 14mm/pix respectively for the three flights
altitude (10, 15 and 35m). Themodels are geo-referenced thanks to the
coordinates stored into the EXIF files of each image. For more extensive
information on the process, see Verhoeven (2011) and Ventura et al.
(2016). The orthomosaics generated from images collected at 10m alti-
tude, were considered as our AOI and used for data assessment.

2.3. Gold standards

2.3.1. In-situ ground assessment
We performed an in-situ ground assessment (GA) of the AOI, aimed

at quantifying the AMD on the studied shorelines in order to calculate
the efficiency of the UAV survey-protocols. This quantity represents
our first Gold Standard (GA-GS). As a first step, a recognition of the in-
vestigated shorelines was conducted to detect AMD. The items found
during the inspection were counted and classified by the operators
into different subtypes (Table 1). The category named “other” refers to
objects and fragments that were smaller than 5 cm, which is the mini-
mum size of the target objects that we decided when defining the opti-
mal protocol described in termsof the image quality. Then, these objects
were re-arranged in the specific AOI to be monitored by UAV
overflights.

2.3.2. Image screening
In order to evaluate the quality of the images, a comparison was

made between the number and type of items counted by the operators
during the in-situ GA on the beach, and the number and type of items
counted by an operator during an image screening (IS) of the
orthomosaic on a PC. The AMD recognised via IS represents our second
GS (IS-GS), and a smart best-estimate of the actual GA-GS. Indeed, prov-
ing the feasibility of identifying and estimating the AMD by screening

http://www.dji.com/it/ground-station-pro
http://www.dji.com/it/ground-station-pro
http://www.agisoft.com
http://www.agisoft.com


Fig. 3. Drone survey over Adangau (a.) sandy long beach. The path followed by the drone (b.) is overlayed on the high-resolution orthomosaic that was generated applying the SfM
workflow (c.) to RGB images.
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images collected by UAVs, rather than by operators on the ground, is
crucial to choose the optimal UAV survey-protocol for the collection of
images suitable for deep learning, and to establish procedures that
allow avoiding the time-consuming GA of the operators.

2.4. The deep-learning algorithm

In order to allow easy access to AI non-expert users, we used a com-
mercial software – PlasticFinder (Italian software license 012677
D011755, DeepTrace Technologies, www.deeptracetech.com/) – to de-
tect and quantify AMD. The core algorithm of the software is a deep-
learning convolutional neural network (CNN). CNNs are a class of
multilayer architecture suitable for processingRGB images for classifica-
tion and object detection tasks, where the stack of convolutional layers
allows for translation invariance - i.e. the net is trained to recognize an
object independently of its position within the image.

The adoption of a deep learning approach has one main motivation.
In order to provide a tool that could favour a scalable approach, i.e.
adaptable to different scenarios, a large image-database was needed to
provide a general training set, i.e. a set of images to let the algorithm
learn the classes of interest. The main advantage of deep learning is
that it automates themost critical part of aMLworkflow: the feature ex-
traction. In contrast to conventional ML methods (e.g. Random Forest,
Support Vector Machine, Gradient Boosting Machines), that require

http://www.deeptracetech.com/


Table 1
AOI, number of minimum IOI, climate, light and weather conditions of each investigated
Maldivian island during the UAV survey and the in-situ ground assessment (GA). The
number of items collected during the GA on each beach is listed per each class, and the
items identified via image screening (IS) via PC are also reported.

Jinnathuga Adangau En'Boodhoo

AOI (m2) 216 1056 225
IOI 1 5 1
Climate (month) April November October
Light (time) 12 pm 12 pm 5 pm
Weather (conditions) Sunny Sunny Cloudy
Use Training set Testing set Testing set

AMD class GA IS GA IS GA IS
Lighter 4 1 1 1 4 4
Bottle 21 21 50 54 47 43
Straw 1 0 1 0 0 0
Net 11 8 3 3 2 3
Plastic bag 7 7 43 50 3 2
Aluminum can 8 6 11 13 21 14
Plastic containers 3 3 1 1 12 7
Plastic utensils 0 0 20 8 1 0
Flip flop 1 1 13 8 32 29
Other 26 25 4 3 13 19
Total 82 72 147 141 135 120
Matching score (%) 87.8 95.9 88.8
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hand-design features as input, a neural network is made of trainable
multilayers that learn automatically the features through geometric
transformations and gradual adjustments of learning weights with re-
spect to a feedback signal, thus being more suitable than conventional
ML for large dataset training (LeCun et al., 2015, Chollet, 2017). The
PlasticFinder CNN has been tailored for 5 classes of images, namely:
“vegetation”, “sea”, “sand”, “AMD” and “other” (i.e. sand with small
pieces of wood, stones, algae). UAV images obtained from the survey
of Jinnathuga island were used for the collection of the training set
(Fig. 4).

The island was chosen on the basis of the fact that all the classes of
interest were present. Therefore, we selected training images, within
the AOI, representing the classes of interest. For each class, a balanced
number - of the order of thousands – of different samples was collected,
in order to tailor the algorithm on the specific experimental settings. A
subsample of UAV images (N = 3) collected on the other two islands,
Adangau and En'Boodhoo, were used for the testing set. The surveys
of the testing-set islands were finalised at different experimental condi-
tions (Table 1) which allowed investigating the influence of climate,
light and shadow on the efficacy of the algorithm. When a tested
image is input in the software, it returns pixel-wise classification
heatmaps, representing a pixel probability-map for each class, and a
bounding-boxes map with the detected AMD.

The performance of the automatic detection, classification and quan-
tificationweremeasured by comparing the results with the two GS. The
metric is expressed in terms of true positive (TP), false negative (FN)
and the false positive (FP) items, rather than in terms of pixels, for an
easier interpretation. The statistical measure of the performances is
expressed through the Sensitivity = TP / (TP + FN), the Positive
Fig. 4. Examples of Jinnathuga island images (a., b. and c.), used as training set for the deep-learn
in (a), “sand” in (a), (b) and (c), “sea” in (b), “vegetation” and “other” in images (a) and (c).
PredictiveValue PPV= TP / (TP+ FP), and the harmonizedmeanof Sen-
sitivity and PPV, given by the F-score= 2TP / (2TP + FP + FN).

3. Results

3.1. Optimization of UAV survey protocols

The optimal protocol for the UAV survey, as a compromise between
image resolution and number of IOI to cover the AOI, was found at a
UAV altitude of 10 m, corresponding to a GSD of 4.4 mm/pixels. The
know dimension of the objects (metric tape) in the orthomosaics
strongly matches the true dimensions measured on the beaches with
an average accuracy of ≈1 mm. Table 1 reports the different AOI cov-
ered following the optimal protocol for three selected islands, namely
Jinnathuga, Adangau and En'Boodhoo islands, and the corresponding
number of minimum IOI.

3.2. Gold standards

Table 1 reports the experimental results of the in-situ GA and of the
IS of the AOI. The matching scores express the ratio of the AMD found
via IS to the AMD found during the GA. This score accounts for the esti-
mated error in the use of the GS produced via IS.

3.3. The deep-learning algorithm

3.3.1. Training, testing and performance
The training of the tailored CNN, performed on images from

Jinnantuga-island (Fig. 4), achieved a validation accuracy higher than
95%. Adangau and En'Boodhoo-islands images (Figs. 5a–6a) were used
to test the algorithm. A pixel-wise probability heat-map of each input
image has been obtained by the software, as well as a bounding-boxes
map for the detected AMD (Figs. 5a–6a). In particular, for each pixel, a
probability is given to be classified as AMD, thus allowing a visual un-
derstanding of the specific areas that might be subjected –with a differ-
ent probability of risk exposure – to the presence of plastic debris.

Figs. 5c and 6c, shows bounding-boxes maps with all AMD detected.
Table 2 reports the numerical results obtained by comparing the soft-
ware output and the IS-GS for each image. The results highlight the av-
erage software-performance for En'Boodhoo drops of a factor of about 3
with respect to the Adangau case.

Therefore, these results give the evidence that the collection of UAV-
images suitable for the training and testing of the deep-learning
algorithm, should rely on specific recommendations regarding the opti-
mization of the UAV survey, the collection of the GS, and the develop-
ment of the algorithm itself.

4. Discussion

4.1. The UAV survey and the AMD detection

The low cost, the high resolution and the high flexibility of UAVs
quickly turned out to make them extremely versatile and useful tools
ing algorithm. Note the presence of the different classes in the images, in particular “AMD”



Fig. 5. Canvas on the left (a.), from top to bottom: testing-set images A1, A2 and A3 for Adangau-island. Central canvas (b.), from top to bottom: PlasticFinder pixel-wise classification heatmaps for Adangau-island images A1, A2 and A3 representing,
respectively, the classes sea (A), sand (B), vegetation (C) other/AMD (D), andAMD (E)with the probability scale ranging from0 to 1. Canvas on the right (c.), from top to bottom: PlasticFinder bounding-boxesmaps for the Adangau-island images A1,
A2 and A3. Each green bounding box is identified as an item of AMD by the software. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Canvas on the left (a.), from top to bottom: testing-set images E1, E2, E3 for En'Boodhoo island. Central canvas (b.), from top to bottom: PlasticFinder pixel-wise classification heatmaps for En'Boodhoo-island images E1, E2, E3 representing,
respectively, the classes sea (A), sand (B), vegetation (C), other/AMD (D), and AMD (E)with the probability scale ranging from0 to 1. Canvas on the right (c.), from top to bottom: PlasticFinder bounding-boxesmaps for the En'Boodhoo-island images
E1, E2, E3. Each green bounding box is identified as an item of AMD by the software. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 2
Results for the Adangau and En'Boodhoo testing-set images A1, A2, A3 and E1, E2, E3, re-
spectively. Average scores (AVG) are also given for each set. AMD accounts for the total
real items in each image, as identified by the gold standard. True positive (TP), false neg-
ative (FN) and false positive (FP) items are combined to express the software performance
in terms of sensitivity, PPV and F-score.

IMG AMD TP FN FP Sensitivity (%) PPV (%) F-score (%)

Adangau
A1 37 25 12 0 0.68 1.00 0.81
A2 58 40 18 4 0.69 0.91 0.78
A3 89 56 33 6 0.66 0.90 0.74
AVG 61.3 40.3 21 3.3 0.67 0.94 0.78

En'Boodhoo
E1 71 23 48 66 0.32 0.26 0.29
E2 43 5 38 6 0.12 0.45 0.19
E3 98 25 73 65 0.26 0.28 0.27
AVG 70.6 17.6 53 45.6 0.23 0.25 0.33
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for the investigation and analysis of a number of environmental issues.
Small UAVs are used indeed with increasing frequency, in many re-
search activities with applications in different fields: structural geology
(Bonali et al., 2019), forestry sciences (Baron et al., 2018; Mlambo et al.,
2017), mapping of sensitive marine habitats (Ventura et al., 2018), ma-
rine megafauna surveys (Colefax et al., 2018; Kiszka et al., 2016), coral
bleaching detection (Levy et al., 2018). These platforms, especially the
commercial drones, are proving to be useful tools for high-resolution re-
mote sensing data collection, especially because of their small size, the
increased lifetime of the batteries and the possibility to plan autono-
mous flights with user-friendly ground station software. Moreover,
SfM algorithms allow obtaining accurate Digital Terrain Models
(DTMs) and orthomosaics over large areas.

AMD was monitored worldwide through aerial surveys, along the
beaches, since 2012 (Kako et al., 2012; Deidun et al., 2018; Kataoka
et al., 2018; Martin et al., 2018; Sha et al., 2018) but explored locations
are still limited (Fig. 7). Besides, more significant, it is the absence of a
standardized protocol for data acquisition and elaboration. Previous
studies, performed using a balloon equipped with a digital camera
(Kako et al., 2012) and aerial photographs (Kataoka et al., 2018), faced
problems related to the orthorectification and to the pixel-size of the
images: a GSD of 10 cm/pix allowed identifying only groups of debris
and not the single objects. The recent adoption of UAVs for AMDmoni-
toring overcome a number of limitations mainly related to the flight al-
titude and to the GSD, to the orthorectification of the images, and to the
repeatability of the surveys in a short time. However, the data-
processing procedures are not uniform, ranging from visual
Fig. 7.Geographic distribution of studies that used remote sensing techniques tomonitor andde
2018); 3 Saudi Arabia (Martin et al., 2018); 4 Fuzhou, Fujian, China (Sha et al., 2018); 5 Seto In
interpretation of the images (Deidun et al., 2018) and spectral profile
analysis of litter (Sha et al., 2018), to the use of machine learning
methods (Martin et al., 2018). The use of AI classifiers (Martin et al.,
2018) is more complex for different reasons, among which the lack of
publicly available large databases (providing adequate images to train
algorithms) is notable. The difficulty of developing scalable approaches,
i.e. procedures that do not depend on local environmental constrains, is
also a major issue for the use of AI classifiers.

The advantages in using UAVs, in terms both of resolution andmon-
itoring repeatability, match perfectly with the need of understanding
the pattern of aggregation in a remote area such as the Republic of
Maldives. Here, a considerable amount of marine litter has been re-
ported, despite the remoteness of the location (Imhof et al., 2017). How-
ever, Imhof et al. (2017) highlighted the need for a robust protocol,
allowing extensive sampling in space and time to collect scientifically
sound data (Imhof et al., 2017). Remote-sensing studies, related to the
accumulation and transportation of AMD, were not conducted before
this work in the Republic of Maldives (Fig. 7). The lack of such monitor-
ing studies for this area is significant, considering that plastic debris
from the rivers of South Asia contributes to 67% of the global annual
input (Lebreton et al., 2017) and that countries on the Indian Ocean
are among the principal producer of mismanaged plastic waste
(Jambeck et al., 2015). Besides, it is not clear where all this plastic,
that should accumulate in the Indian Pacific, gyre is going (Mheen
et al., 2019). Thus, the proposed methodology will improve and stan-
dardise the data collection of marine-litter accumulation on beaches
and shorelines, gathering valuable and comparable data, even in remote
and isolated areas.

The results of our study confirm most of the advantages of using a
consumer-grade drone to carry out environmental monitoring. In par-
ticular, the use of a DJI Phantom 4 drone allowed speeding up consider-
ably the standardwalking beach survey and to access remote areas such
as Maldives.

On the surveyed islands, anthropogenic debris were found every-
where: on the water's edge, just left there from waves and tides; on
the upper part of the beaches and in the bushy coastal vegetation, likely
carried there from storm tides andwinds, or left by local tourists. The se-
lected GSD allowed the identification and categorization of debris for
each single detected item,making our remote observations comparable
to the ones performed by operators on the ground. In fact, thematching
between the ground-assessment and the visual screening of the images
is higher than 87% (Table 1). In addition, the results of our survey proto-
col shows that themajority of the detected objects (Table 1) were plas-
tics bottles and aluminum cans. Particularly abundant were also flip
flops on En'Boodhoo and Adangau. These three categories of debris
tect beach debris: 1 Vancouver Island, Canada (Kataoka et al., 2018); 2Malta (Deidun et al.,
land Sea, Japan (Kako et al., 2012); 6 Republic of Maldives, present study area.



Table 3
Comparison between results from Martin et al. (2018) (average on the overall results),
PlasticFinder results for Adangau island and averaged results for Adangau and En'Boodhoo
island.

Algorithm TOT TP FN FP Sens (%) PPV (%) F-score (%)

Martin et al. 415 164 251 1941 0.40 0.08 0.13
PlasticFinder
(Adangau)

61.3 40.3 21 3.3 0.67 0.94 0.78

PlasticFinder
(AVG A/E)

131.9 57.9 74 48.9 0.44 0.54 0.49
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were observed with different degradation level: from brand new, with
labels and the colours still intact, to partially disrupted. This can indicate
the heterogeneity of the sources: some of them can be just washed up
on the shore from the closest inhabited island or discharged from
boats that passed nearby; others may have float in the ocean for thou-
sands of kilometres before reaching the shore. Instead, the higher pres-
ence of plastic bags (foods wraps and plastic bags) on Adangau island is
most probably due to the use of the island as a picnic and barbeque lo-
cation from the inhabitants of the atoll.

The graphical outputs and the numerical results for Adangau Island
show good performances (Fig. 5, Table 2) and, in particular, in the face
of an average sensitivity of 67%, the average PPV reaches 94%. This
means that the deep-learning algorithm performance is affected by a
non-negligible number of FN items – impacting on the sensitivity –
but also that, on the other hand, the software is highly specific in the
ability to recognize AMDwith respect to FP items. In addition, it should
be noted that, for Adangau island, the software performance is quite sta-
ble, even when the number of real AMD-items on the beach increases
(Table 2). The pixel-wise classification heatmaps for En'Boodhoo-island,
shown in Fig. 6b, qualitatively confirm the good ability of deep learning
algorithm, in recognizing the presence or absence of elements belong-
ing to the “sea” class. Also, the software correctly reports on a low-
probability with respect to the presence of vegetation (below 30%). On
the contrary, the heatmaps for the other classes draw attention to issues
that become evident when looking at the zoomed bounding-boxes
maps in Fig. 8, and to the quantitative results shown in Table 2. In this
case, the average software-performance for En'Boodhoo drops of a fac-
tor of about 3 with respect to the Adangau case. This limitation can be
explained by considering the different lighting conditions. In particular,
Adangau-island images were collected at 12 am of a sunny day, there-
fore with similar sunlight-conditions of the testing set of Jinnathuga is-
land. On the contrary, En'Boodhoo images were collected at 5 pm, and
the shadows in the proximity of footprints (Fig.8) or of real AMD, repre-
sent pitfalls for the algorithm, as clarified by the high number of FP
items in Table 2. As amatter of facts, the softwarewas not trained to rec-
ognize footprints or shadows, and therefore such a limitation restricts
the use of PlasticFinder, in its present version, to specific sunlight-
conditions. For these reasons, we suggest conducting the survey with
the sun high on the horizon, in order to avoid excessive shadows on
the surveyed areas. However, to date, and to the best of our knowledge,
there is only another algorithm presented to the scientific community,
that has been developed for the specific purpose of automatically detect
and quantify AMD along the shores by using a combination of UAV im-
ages and AI. In their pioneering work, Martin et al. (2018), focused their
efforts in the Saudi-Arabian shorelines. They faced the highly-
challenging task of both detecting and classifying the AMD typology
with a series of multi-class random-forest classifiers, based on the ex-
traction of HoG features. The authors validated the feasibility of using
AI for AMD detection, but pointed out that the use of deep learning
would have been more beneficial with respect to their approach that
achieved amaximum sensitivity of only 44%. Therefore, ourwork repre-
sents the first implementation to automatically detect and accurately
quantify AMD, based on a deep-learning approach. Results in Table 3
point out that PlasticFinder performances give better results, with
Fig. 8. Examples of shadows in the proximity of footprints (left image) and of items of AMD (righ
in its present version.
respect to all the metrics, especially if used in the appropriate sunlight
conditions. In particular, PlasticFinder PPV is much higher than the
one obtained by Martin et al. (2018), allowing for a more specific tool
to alarm on and quantify the presence of AMD. In fact, it is important
to highlight that, in order to monitor the presence of AMD and to
know which are the areas that require an urgent intervention (i.e.
those where AMD accumulate the most), it is essential to have a tool
that is able to detect only AMD, without mistaken false positives. To
this extent, reaching a high PPV is more crucial than a high Sensitivity.
Also, the fact that the reached Sensitivity is constant, despite the differ-
ent loads of litter on the beach, is also a good result because it shows
that the more is the AMD, the higher is the litter detected by
PlasticFinder, i.e. this technology is able to detect accumulation zones.

These results reflect the major advantage of deep learning, with re-
spect to conventional MLmethods, which is the fact that it is not neces-
sary to pre-transform data (e.g. an image) into selected features to feed
models, but data can be input into neural-network models to let them
automatically identify the best representations that allows tasks such
as detection or classification (LeCun et al., 2015).

4.2. Best-practices optimization and future improvements

In order to optimize and enhance best practices for AMD remote-
sensing monitoring, further improvements should be applied to the
adopted protocols and methods.

In terms of theUAV survey, we reckon that once all the flight param-
eters have been set, themonitoring can be carried out from a small boat,
in the proximity of the shores, without the need of reaching the beach,
often inaccessible for the presence of coral reefs all around the islands.
Therefore, this methodology can be particularly useful in geographical
sites, such as the Maldives, where the presence of many small remote
uninhabited islands, and the need to optimize the AMD beach-
monitoring, represents a pressing matter.

In terms of the ground assessment protocol, such assessment is used
to validate the reliability of the methodology, but, in implementing the
protocol, it is not supposed to happen every time (otherwise the proto-
col would lose its time-efficiency). For this reason it has been not in-
cluded in the Protocol recommendations (Table 4). In general, the
beach should be left untouched before the UAV survey to avoid foot-
prints or other environment manipulations that could affect the meth-
odology performance, especially in remote places.

Another important remark is that, for a relevant fraction of the AMD,
thedeposition on thebeach is only a transitory phase before being taken
t image), that aremistaken as AMDby the software, representing pitfalls for the algorithm



Table 4
Optimal protocol and key recommendations for the optimization of the UAV survey, the
collection of gold standards and of UAV images suitable for the training and testing of a
deep-learning algorithm.

UAV Survey

Flight Altitude 10 m
GSD 4.36 mm/pix
Camera Gimbal
Orientation

-90° (nadir orientation)

Images acquisition
along fixed paths

80% frontal overlap
70% lateral overlap
2 s of shooting interval
1,3 m/s constant velocity

Gold Standard
Ground Assessment AMD inspection and subtype classification (to be limited to

few representative areas for the validation of methodology)
AMD Size N5 cm

Image Screening AMD counting and subtype classification
Matching Score N80%

Deep Learning
Training # of images per class ~ 103

Validation accuracy for tailored CNN N95%
Testing # of images ~ # IOI

Use IS-GS to test performances with metrics
Use GA-GS to estimate error on the IS-quantified
performance
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up by the currents to resume the floating travel in the ocean. Instead,
other AMD can be trapped on the upper part of the beach, where envi-
ronmental factors and the erosive action of the sand can accelerate the
plastic degradation processes. Themicroplastics particles (b5mm) pro-
duced by the degradation of the AMD trapped on the upper part of the
shore can enter in the sediments or can be released as contaminants
in the water of the lagoon (Saliu et al., 2018; Saliu et al., 2019). There-
fore, fast and efficient data collection and image analysis of the distribu-
tion of AMD on the shore, as well as specific AI tools for its automatic
and objective assessment are necessary, but not sufficient, since
microplastic is lost from this detection and quantification. However,
the distribution andquantitation of AMD, as obtained fromour protocol,
could be used to understandwhich are themost impacted areas, and the
AMD depositional seasonal trends connected to the Indian Ocean cur-
rents patterns (Mheen et al., 2019). The creation of an integrated
model could allow stakeholders (e.g. governments, NGO) using this in-
formation in order to promote mitigation actions, such as specific citi-
zenship awareness initiatives, beach–clean up events, but also
addressing –with a data-driven approach - the interception of the float-
ing AMD, before reaching the shorelines.

Finally, we would suggest some improvement for PlasticFinder, for
example, by a more in-depth training, with the aim of avoiding
sunlight-conditions dependence for its use, which represents, to date,
one of its major limitations. Also, optimization should be implemented
to scale up the algorithm speed and ability to process full orthomosaic
images, overcoming time-scale limitations due to processing of a large
amount of data. In Table 4, we summarize and suggest an optimal pro-
tocol, with key recommendations.

5. Conclusion

Our work was aimed at proposing an efficient and reliable monitor-
ing protocol, to address a pressingworldwide environmental issue such
as AMD deposition along the shores. Low altitude remote-sensing data
are essential for obtaining a synoptic overview of extended areas, and
UAVs are powerful tools to acquire them. Our study, confirmed the
use of a commercial drone for AMDmonitoring as a fast and reliable sur-
veys methodology. The use of UAV is instrumental to survey remote
areas and the spatial resolution achieved in the collected images
allowed detecting a percentage of the objects on the shores higher
than 87.8%. A deep-learning based software, PlasticFinder, has been
used for the automatic detection and quantification of AMD, providing
analysis of the UAV collected images. In the Maldivian case study, the
overall performances were good, reaching a PPV of 94% with the better
sunlight conditions, much greater than the only state-of-the-art AI algo-
rithm so far published in literature. The only critical limitations, ob-
served in our study, are determined by environmental circumstances
encountered during the survey, and especially sunlight conditions and
the associated terrain shading effects: restrictions are given for the im-
ages that can be analysed with the deep-learning algorithm in its pres-
ent version, where the PPV is reduced to 54%.
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