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Abstract: Digital breast tomosynthesis (DBT) studies were introduced as a successful help for the
detection of calcification, which can be a primary sign of cancer. Expert radiologists are able to
detect suspicious calcifications in DBT, but a high number of calcifications with non-malignant
diagnosis at biopsy have been reported (false positives, FP). In this study, a radiomic approach was
developed and applied on DBT images with the aim to reduce the number of benign calcifications
addressed to biopsy and to give the radiologists a helpful decision support system during their
diagnostic activity. This allows personalizing patient management on the basis of personalized
risk. For this purpose, 49 patients showing microcalcifications on DBT images were retrospectively
included, classified by BI-RADS (Breast Imaging-Reporting and Data System) and analyzed. After
segmentation of microcalcifications from DBT images, radiomic features were extracted. Features
were then selected with respect to their stability within different segmentations and their repeatability
in test–retest studies. Stable radiomic features were used to train, validate and test (nested 10-fold
cross-validation) a preliminary machine learning radiomic classifier that, combined with BI-RADS
classification, allowed a reduction in FP of a factor of 2 and an improvement in positive predictive
value of 50%.

Keywords: radiomic; digital breast tomosynthesis; calcifications; diagnostic imaging

1. Introduction

Breast calcifications are a diagnostic challenge in mammography interpretation and
frequently prompt a needle biopsy [1], being a possible sign of breast cancer (BC) [2].

The introduction of quasi-three-dimensional (3D) acquisition with digital breast to-
mosynthesis (DBT) has brought considerable advantages in BC detection rates and also,
in some studies, lowered the false positive (FP) rate and then the recall (i.e., assessment)
rate of patients [3]. In addition, it is worth noting that DBT vacuum-assisted biopsy (VAB)
has been recently shown to significantly reduce operation time and radiation exposure [4].
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However, accurate visualization of calcifications and discrimination between benign and
malignant ones remains an issue for human readers even with DBT. Impressions from
initial studies on DBT in the 1990s supposed lower accuracy compared to standard digital
mammography (DM), mainly because a cluster of microcalcifications may be visible on
different two-dimensional (2D) images, with poor resolution in out-of-focus images and
lack of comprehensive cluster visualization [5]. These drawbacks have been overcome us-
ing DBT image series and/or DBT-derived synthetic two-dimensional (2D) views, offering
a visualization of calcifications similar or even highlighted when compared to standard
DM. Notwithstanding these improvements, the malignancy rate of the calcifications ad-
dressed to needle biopsy on the basis of DBT remained relatively low, as it was with 2D
mammography, with a not-negligible amount of FP, as reported by Lang et al. [6].

Radiomics is a relatively new image-analysis approach allowing the quantitative
measurement of high-throughput features from radiological images that are supposed to
express the heterogeneity of texture, shape and size of distinct tissue phenotypes correlated
to different clinical outcomes [7]. When combined with machine learning algorithms, the
radiomic approach was proven able to provide automatic computer-aided classifiers of
radiological images. Indeed, radiomic analysis has already been widely implemented in the
last few years in various clinical applications [8–10], showing promising results in clinical
decision support systems (DSS) and fostering highly tailored medical decision-making in
both diagnosis and prognosis [11,12].

Radiomic analysis of DBT (as well as DM) images is supposed to have the intrinsic
capability to capture and quantitatively measure those morphometric and textural hetero-
geneity features of calcifications invisible to the radiologists’ eyes that can be associated
with malignancy or poor prognosis, potentially addressing the above-mentioned shortcom-
ings, thus boosting DBT diagnostic performance in women recalled for assessment after
calcifications are detected at screening DM [3] or when using DBT as a screening tool, as
recently allowed by guidelines issued by the European Commission Initiative on Breast
Cancer [13].

While computer-aided detection of calcifications on DBT has been the object of var-
ious studies for automatic diagnosis [14–18], few radiomic applications with predictive
malignancy or benign role on DBT images have been reported [19,20]. To the best of our
knowledge, no radiomic study has been published attaining a higher diagnostic accuracy of
radiomics applied to DBT, which would ultimately reduce FP and underpin personalized
risk strategies for the management of breast calcifications, eventually considering the not
immediate need of biopsy referral but alternative recall for low-risk patients according to a
personalized medicine approach.

In this study, we aimed therefore to conduct a radiomic analysis of DBT calcifications
with the aim to predict the risk of malignancy among those that would be addressed to
biopsy by the radiologists and to give them a helpful DSS during their diagnostic activity.

2. Materials and Methods
2.1. Dataset

In this retrospective, non-consecutive, study, DBT images acquired from patients
at our Institution between May 2018 and December 2019 were retrieved, retrospectively
evaluated and collected for a radiomic-based classification study to predict malignant
vs. benign breast calcifications with low FP ratio. Patient consent was waived by the
Ethical Committee due to the retrospective nature of this study. In particular, the study
was conducted according to the guidelines of the Declaration of Helsinki and approved by
the Ethical Committee of Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico in
Milan (protocol code Tomo-AI; protocol-ID 1666; approved on 14 October 2020).

DBT images were acquired using two full-field digital mammography systems with
tomosynthesis (Selenia Dimensions; Hologic Inc., Marlborough, MA, USA). At the time
of the study, both the digital mammography systems machines were working within the
manufacturers’ specifications and EC quality control regulations. Both the cranio-caudal
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and the mediolateral-oblique projection on patients’ breasts were reviewed by an expert
breast radiologist with more than 10 years of experience, and the projection in which
calcifications were most evident was ultimately analyzed to provide the diagnosis.

Inclusion criteria for the study were: patients with higher than normal risk (e.g.,
familiar risk) with suspicious microcalcifications detected on DBT by an expert radiolo-
gist reader, classified by the radiologist according to the Breast Imaging-Reporting and
Data System (BI-RADS) radiological classification [21], diagnosed by the radiologist as
“suspected of malignancy” (positive at DBT), then sent to DBT-VAB for histopathological
reports and followed up for 1–2 years.

DBT-VAB was performed by three dedicated breast radiologists (with 5–15 years
of experience) using a prone breast biopsy system (Affirm Prone and Eviva; Hologic
Inc., Marlborough, MA, USA) in combination with a 9-gauge needle for tissue sampling,
acquiring at least 12 specimens for each patient.

The number of DBT images were selected in order to fulfill a 2:1 ratio of benign to
malignant ratio of calcifications as diagnosed at histopathological reports (and clinical
follow up) in order to properly train the model on low false-positive performance.

2.2. Radiologist Classification

For all patients considered in this study (with calcifications found positive at DBT), an
expert radiologist reader performed the BI-RADS classification for each calcification on
DBT images, fully blinded with respect to the histological results of breast calcifications at
DBT-guided VAB (and with respect to the clinical follow up in case of B3).

2.3. Radiomic Classifier

Radiomic methodology was applied to include DBT images of patients, according to
the International Biomarker Standardization Initiative (IBSI) guidelines [22].

For this purpose, the TRACE4© radiomic platform was used [23], allowing the whole
IBSI-compliant radiomic workflow combined with ensembles of machine learning (ML)
classifiers to be obtained in a fully automatic way.

IBSI radiomic workflow included:
(i) the segmentation of the calcification region from each patient DBT image,
(ii) the preprocessing of image content within the segmented region of interest for the

radiomic feature extraction,
(iii) the extraction of radiomic features from the segmented region of interest,
(iv) the selection of radiomic features stable with respect to different segmentations

(it may occur that different human operators segment the calcification regions of different
images) and repeatable in test–retest study,

(v) the use of such stable radiomic features to train, validate, and test different ensem-
bles of ML classifiers in the binary classification task of interest (malignant vs. benign),
including the reduction of such stable and repeatable features to not-redundant features in
a number that is statistically proper to the number of included image samples of patients.

More specifically:
The segmentation of the calcification region was performed manually, slice by slice,

by the expert radiologist, using the TRACE4 Segmentation tool.
The preprocessing of image intensities within the segmented region of interest in-

cluded resampling to isotropic voxel spacing, using a down-sampling scheme by consid-
ering image slice thickness of 1 mm and intensity discretization using a fixed number of
64 bins.

The radiomic features extracted from the segmented region of interest belong to
different families: morphology, intensity-based statistics, intensity histogram, gray-level
co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), gray-level size zone
matrix (GLSZM), neighborhood gray tone difference matrix (NGTDM), gray-level distance
zone matrix (GLDZM), and neighboring gray level dependence matrix (NGLDM).
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Their definition, computation and nomenclature are compliant with the IBSI guide-
lines, except for the features of the family morphology, originally designed for 3D images,
which were replaced with ten 2D equivalent features (e.g., 3D features volume and surface
were replaced with 2D features area and perimeter, respectively).

Additional details:

• Morphology (10 features). Morphological features (such as area) describe the geometry
of an ROI and are based on the voxel contained in the analyzed ROI. For this feature
class, IBSI guidelines could not be entirely followed, since 3D images are required
while mammography images are 2D images by definition.

• Intensity-based statistics (18 features). Intensity-based statistical features (such as
mean intensity, median intensity and intensity variance) describe the intensity distri-
bution within the ROI.

• Intensity histogram (22 features). To calculate intensity histogram features (such as
mean discretized intensity, discretized intensity variance and discretized intensity
kurtosis), the original intensity distribution is discretized into intensity bins.

• Grey level co-occurrence matrix (100 features). These features are second-order fea-
tures describing image texture according to pixels’ distribution. For this purpose, a
specific matrix was designed to represent in each element the number of times two spe-
cific pixels are at a defined distance and angle. The given matrix was used to calculate
features such as autocorrelation, cluster shade and cluster prominence [24,25].

• Grey level run length matrix (63 features). These features derive from a support
matrix representing the number of times specific pixel/voxel intensity is present in
a given direction. Examples for this group of features are grey level non-uniformity,
run-length non-uniformity and grey level variance [24,25].

• Grey level size zone matrix (32 features). Features of this group (such as small and large
area emphasis, describing the distribution of small and large size zones respectively,
size-zone non-uniformity, and zone percentage) quantify the grey level zone of an
image, defined as the zone where adjacent (i.e., with distance equal to 1) pixels/voxels
share the same intensity [25,26].

• Grey level distance zone matrix (30 features). These features describe how many
homogeneous connected areas are present within the Region-Of-Interest (ROI) volume,
considering a certain intensity and distance to the shape border [6].

• Neighborhood grey tone difference matrix (10 features). Features from this group
(such as coarseness, contrast and busyness) describe spatial changes in the intensity
of pixels/voxels in the ROI, analyzing differences between a specific pixel and the
surrounding ones. This is accomplished through the creation of a one-dimensional
matrix containing—for each pixel intensity value—the summation of the differences
between the analyzed pixel and all surrounding neighbors [26,27].

• Neighboring grey level dependence matrix (34 features). These features describe the
grey level dependency, defined as the number of voxels within a given distance from
the central voxel that they depend on. A neighboring voxel is considered dependent
if the difference between that voxel and the central voxel is smaller than a defined
threshold. Therefore, the ensuing grey level dependence matrix contains the number
of times a specific voxel has n dependent voxels in its neighborhood [26,27].

These steps were performed using the TRACE4 Radiomic tool. Radiomic features
were reported by TRACE4 according to IBSI standards.

The selection of radiomic features that were stable with respect to different segmen-
tations and repeatable in the test–retest study was performed by ICC (ICC > 0.80) when
comparing features obtained by data augmentation strategies, (a) randomly manipulating
the manual segmentation of the lesion region (performed by the expert operator), and (b)
rotating the original images and segmentations. The selected radiomic features (stable and
repeatable) were reported by TRACE4.

Two different ensembles of ML classifiers were trained, validated, and tested, for the
binary classification task (malignant vs. benign or negative, based on histopathology and
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radiological results), selecting stable, reproducible and not redundant features. The over-
sampling technique for the minority class (malignant) was applied by adaptive synthetic
sampling method in order to balance the training.

The first considered ML system was an ensemble of 200 Decision Trees combined with
Gini index; the second machine learning system was an ensemble of 100 Support Vector
Machines combined with principal components analysis and fisher discriminant ratio. For
both systems, a nested K-fold cross-validation method was used (k = 10), and a majority
vote rule was applied to assign the binary classes.

For both the classification ensembles, the predictive performances were measured
across the different folds (k = 10) in terms of mean Accuracy, Sensitivity, Specificity, AUC,
with 95% Confidence Interval and p-value, FP), FN. The classification system with the best
performances was chosen as the best classification system for the binary task of interest
(malignant vs. benign).

Moreover, a permutation test was performed to assess the statistical significance of
the results and to exclude the presence of false discoveries. The permutation test consists
in (1) randomly permuting the labels associated with the DBT images, (2) performing train-
ing, validation and testing using these permuted labels, and (3) computing classification
performance. This procedure is repeated 100 times, thus obtaining a set of 100 “permuted
models” and 100 corresponding classification performances. This set of 100 classification
performances is then compared to the performance obtained by the non-permuted gener-
ated model. A p-value is calculated as the number of “permuted” models that performed
better than the “original” model.

These steps were performed by using the TRACE4 Statistics and Modeling tool.

3. Results
3.1. Dataset

In this retrospective study, 49 DBT images including 49 breast calcifications from
49 patients (mean age 51 years, interquartile range 41–81 years) who matched inclusion
criteria (positives at DBT for an expert radiologist, see Materials and Methods) were
ultimately analyzed and used to build a radiomic-based classifier designed to reduce FP
microcalcifications at DBT.

All patients had their calcification histopathological reports available from DBT-
guided VAB and 1–2 years follow-up. Histological results at biopsy were malignant
(B4 or B5) in 18/49 calcifications (37%) and benign (B2 or B3 with disease-free survival at
1–2 years follow up) in 31/49 (63%), with a benign-to-malignant ratio equal to 1.7, thus
matching the criterion of 2:1 benign-to-malignant ratio, according to the inclusion criteria
(refer to Materials and Methods). Among the benign calcifications (31), 19 were diagnosed
as B2 at biopsy, 4 were diagnosed as B1, and 8 were reported as B3 at biopsy but had a
disease-free survival of 12–24 months. Thus, calcification class-labels as “malignant” or
“benign” were known and used as the reference standard for the supervised training of the
radiomic classifier (refer to Materials and Methods). Table 1 shows the reference standard
classification for every single patient included in the study.
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Table 1. Reference standard classification (from DBT-guided VAB and follow-up) for each patient
included in the study.

# Patient Reference Standard Classification
DBT-Guided VAB and Follow-Up

1 Benign (B2)
2 Malignant (B5a)
3 Malignant (B5b)
4 Benign (B2)
5 B3 (Negative at follow up)
6 Malignant (B5a)
7 Malignant (B5a)
8 Malignant (B5a)
9 Benign (B2)

10 Malignant (B5)
11 Benign (B2)
12 Benign (B2)
13 Malignant (B5)
14 Malignant (B4)
15 Benign (B2)
16 Benign (B2)
17 Malignant (B5a)
18 Benign (B2)
19 Benign (B2)
20 Benign (B2)
21 Benign (B1)
22 Malignant (B5b)
23 Malignant (B5a)
24 Malignant (B5a)
25 Benign (B2)
26 Benign (B2)
27 Benign (B1)
28 Benign (B2)
29 Benign (B2)
30 Malignant (B5a)
31 B3 (Negative at follow up)
32 Malignant
33 Benign (B3)
34 Benign (B2)
35 Benign (B1)
36 B3* (Negative at follow up)
37 B3* (Negative at follow up)
38 B3* (Negative at follow up)
39 Benign (B2)
40 Malignant (B5a)
41 Malignant (B5a)
42 Malignant (B5b)
43 Benign (B2)
44 B3 (Negative at follow up)
45 B3* (Negative at follow up)
46 Benign (B2)
47 Benign (B1)
48 Malignant (B5a)
49 Benign (B2)

3.2. Radiologist Classification

Table 2 shows, for all 49 patients considered in this study (with calcifications found pos-
itives at DBT), the results of the BI-RADS classification for each calcification as performed
by an expert radiologist reader on DBT images (refer to Materials and Methods). The
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histological results of breast calcifications at DBT-guided VAB (with the clinical follow-up
in the case of B3) (reference standard classification) are reported for comparison.

Table 2. Reference standard classification (from DBT-guided VAB and follow-up, and radiological
BI-RADS classification for each patient included in the study.

# Patient Reference Standard Classification
Dbt-Guided Vab And Follow-Up

Radiological BI-RADS
Classification

1 Benign (B2) BI-RADS 4
2 Malignant (B5a) BI-RADS 4
3 Malignant (B5b) BI-RADS 5
4 Benign (B2) BI-RADS 4
5 B3 (Negative at follow up) BI-RADS 3
6 Malignant (B5a) BI-RADS 4
7 Malignant (B5a) BI-RADS 4
8 Malignant (B5a) BI-RADS 4
9 Benign (B2) BI-RADS 3

10 Malignant (B5) BI-RADS 4
11 Benign (B2) BI-RADS 3
12 Benign (B2+B3) BI-RADS 4
13 Malignant (B5) BI-RADS 4
14 Malignant (B4) BI-RADS 4
15 Benign (B2) BI-RADS 3
16 Benign (B2) BI-RADS 3
17 Malignant (B5a) BI-RADS 3
18 Benign (B2) BI-RADS 3
19 Benign (B2) BI-RADS 5
20 Benign (B2) BI-RADS 3
21 Benign (B1) BI-RADS 4
22 Malignant (B5b) BI-RADS 4
23 Malignant (B5a) BI-RADS 3
24 Malignant (B5a) BI-RADS 3
25 Benign (B2) BI-RADS 3
26 Benign (B2) BI-RADS 3
27 Benign (B1) BI-RADS 3
28 Benign (B2) BI-RADS 3
29 Benign (B2) BI-RADS 4
30 Malignant (B5a) BI-RADS 4
31 B3 (Negative at follow up) BI-RADS 4
32 Malignant (B5a) BI-RADS 5
33 Benign (B3) BI-RADS 3
34 Benign (B2) BI-RADS 4
35 Benign (B1) BI-RADS 3
36 B3* (Negative at follow up) BI-RADS 3
37 B3* (Negative at follow up) BI-RADS 3
38 B3* (Negative at follow up) BI-RADS 4
39 Benign (B2) BI-RADS 3
40 Malignant (B5a) BI-RADS 4
41 Malignant (B5a) BI-RADS 5
42 Malignant (B5b) BI-RADS 5
43 Benign (B2) BI-RADS 4
44 B3 (Negative at follow up) BI-RADS 3
45 B3* (Negative at follow up) BI-RADS 3
46 Benign (B2) BI-RADS 4
47 Benign (B1) BI-RADS 3
48 Malignant (B5a) BI-RADS 3
49 Benign (B2) BI-RADS 4
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Among the calcifications classified as BI-RADS 4 or 5 (26), 12 were benign (FP) at
DBT-guided VAB, and 14 were malignant (true positives, TP). Among those classified
as BI-RADS 3 (23), 19 were benign (FP) and 4 were malignant (TP). An overall Positive
Predictive Value (PPV) of 37% (18/49) was found from the radiologist assessment (31 FP,
refer to Table 3). However, PPV was 54% for BI-RADS 4 or 5 and only 17% for BI-RADS 3.

Table 3. Reference standard and radiologist classification results of the tested patients. Number of
true positive (TP) and false positive (FP).

Malignant at Reference
Standard

Benign at Reference
Standard

Positives at radiologist
classification 18 TP 31 FP

3.3. Radiomic Classification

Figure 1A,B shows, as representative examples, two ROIs manually segmented by the
expert radiologist on two different DBT images for two calcifications then diagnosed as a
malignant lesion and benign cancer lesion, respectively, at their histopathological reports
(DBT-guided VAB).
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Figure 1. Manual segmentation of the Region Of Interest (ROI) on digital breast tomosynthesis
(DBT) images for: (A) a malignant calcification, and (B) a benign calcification, according to their
histopathological reports (DBT-guided vacuum-assisted biopsy (VAB)) and follow-up.

A total of 319 radiomic features compliant with IBSI guidelines [23,24] were extracted
from each ROI similarly segmented over the 49 breast calcifications on their DBT images
(refer to Materials and Methods). The list, nomenclature and values of such radiomic
features are reported in Supplementary file S1 for the above-mentioned representative
patient with malignant calcification.

Among the 319 radiomic features, 150 were found stable considering different segmen-
tation perturbations originating from the segmentations defined by the expert radiologist,
and the test–retest study (intra-class correlation coefficient > 0.8) (refer to Materials and
Methods). Stable features were found belonging to the following sub-groups: morphology
(7 features), intensity-based statistics (16 features), intensity histogram (7 features), grey
level co-occurrence matrix (54 features), grey level run length matrix (18 features), grey
level size zone matrix (10 features), grey level distance zone matrix (20 features), neigh-
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borhood grey tone difference matrix (6 features), and neighboring grey level dependence
matrix (12 features). The list, nomenclature and values of the 150 stable radiomic features
are reported in Supplementary file S2 for the above-mentioned representative patient with
malignant calcification.

The best ensemble of machine learning (ML) classifiers (refer to Materials and Meth-
ods), supervised-trained (by the reference standard labels of malignant or benign) using
the 150 stable features to classify benign calcifications versus malignant calcifications (refer
to Materials and Methods), was found to have an ensemble of 200 Decision Trees combined
with Gini index. Such radiomic classifier achieved, in testing, an Accuracy, Sensitivity,
Specificity, AUC, PPV and Negative Predictive Value (NPV) of 0.82 (95% Confidence Inter-
val 0.69–0.92), 0.78 (0.52–0.94), 0.85 (0.68–0.95), 0.80 (0.67–0.90), 0.74 (0.49–0.91), and 0.88
(0.71–0.96), according to a nested 10-fold cross-validation classification (see Table 4 for a
summary of the performances and Figure 2 for ROC-AUC).

Table 4. Performances obtained in testing the best ensemble of machine learning radiomic classifiers
for benign calcifications versus malignant calcification. Performances are reported as sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and Area
Under the Curve (AUC), (95% Confidence Interval), * = p-value < 0.05, ** = p-value > 0.005.

Sensitivity Specificity

0.78 [0.52–0.94] 0.85 [0.68–0.95]
PPV NPV

0.74 [0.49–0.91] 0.88 [0.71–0.96]

Accuracy AUC
0.82 * [0.69–0.92] 0.80 ** [0.67–0.90]
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Permutation test showed a p < 0.005 for the presence of false discoveries with respect
to Accuracy, Specificity, AUC, and PPV, and a p = 0.02 for NPV. No statistical significance
was found for Sensitivity (p = 0.1).

Radiomic classification results are reported in Table 5, for each tested patient (with
reference standard classification from DBT-guided VAB and follow-up reported for com-
parison), and in Table 6, for all tested patients, in terms of True Positive (TP), False Positive
(FP), True Negative (TN) and False Negative (FN).
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Table 5. Reference standard classification (from DBT-guided VAB and follow-up), and radiomic
classification, for each single patient included in the study.

# Patient Reference Standard Classification
Dbt-Guided Vab and Follow-Up

Radiomic
Classification

1 Benign (B2) Malignant
2 Malignant (B5a) Malignant
3 Malignant (B5b) Malignant
4 Benign (B2) Benign
5 B3 (Negative at follow up) Benign
6 Malignant (B5a) Malignant
7 Malignant (B5a) Malignant
8 Malignant (B5a) Malignant
9 Benign (B2) Benign

10 Malignant (B5) Malignant
11 Benign (B2) Benign
12 Benign (B2+B3) Benign
13 Malignant (B5) Benign
14 Malignant (B4) Benign
15 Benign (B2) Malignant
16 Benign (B2) Benign
17 Malignant (B5a) Malignant
18 Benign (B2) Benign
19 Benign (B2) Malignant
20 Benign (B2) Benign
21 Benign (B1) Benign
22 Malignant (B5b) Malignant
23 Malignant (B5a) Malignant
24 Malignant (B5a) Malignant
25 Benign (B2) Benign
26 Benign (B2) Malignant
27 Benign (B1) Benign
28 Benign (B2) Benign
29 Benign (B2) Benign
30 Malignant (B5a) Malignant
31 B3 (Negative at follow up) Benign
32 Malignant (B5a) Malignant
33 Benign (B3) Benign
34 Benign (B2) Malignant
35 Benign (B1) Benign
36 B3* (Negative at follow up) Benign
37 B3* (Negative at follow up) Benign
38 B3* (Negative at follow up) Benign
39 Benign (B2) Malignant
40 Malignant (B5a) Malignant
41 Malignant (B5a) Benign
42 Malignant (B5b) Benign
43 Benign (B2) Benign
44 B3 (Negative at follow up) Benign
45 B3* (Negative at follow up) Benign
46 Benign (B2) Benign
47 Benign (B1) Benign
48 Malignant (B5a) Malignant
49 Benign (B2) Benign

As more important results of our study that may impact the management of the
patients, we can observe from Table 6 that there are only six calcifications classified by
our radiomic classifier as FP, showing a reduction of a factor of 5 in FP with respect to
radiological classification (31 FP, Table 3). Among these six FP, we did not find BI-RADS 3
(from the total of 23 BI-RADS 3), proving that such a radiomic classifier could be effective
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in reducing FP in this class for radiologists. The overall Positive Predictive Value (PPV) of
our radiomic classifier was 70% (14/20).

Table 6. Reference standard and radiomic classification results of the tested patients. Number of true
positive (TP), true negative (TN), false positive (FP) and false negative (FN).

Malignant at Reference
Standard

Benign at Reference
Standard

Malignant at radiomic classification 14 TP 6 FP

Benign at radiomic classification 4 FN 25 TN

However, due to non-negligible FN (4) (error = 4/31 = 19%), our radiomic classifier
cannot be used as an automatic reader of DBT images, at least in this preliminary state.
However, in combination with an expert radiologist reading and classification, it may be
used to reduce FP in the BI-RADS 3 class and to stratify the risk.

According to such a combined approach, we defined the following DSS for the BI-
RADS 3 class:

(1) if the radiologist reader classifies a breast calcification as BI-RADS 3 AND the radiomic
classifier classifies as BENIGN -> DSS predicts low risk of malignancy;

(2) if the radiologist reader classifies a breast calcification as BI-RADS 3 AND the radiomic
classifier classifies as MALIGNANT -> DSS predicts a high risk of malignancy;

(3) if the radiologist reader classifies a breast calcification as BI-RADS 4 or 5 -> DSS
assigns a high risk of malignancy.

Overall, there were 15 FP for our DSS; thus reduced by a factor of 2 with respect to
FP from radiological classification (31). The overall PPV was 54.5% (18/33), improving by
50% the PPV performance of the radiologist (37%) (refer to Table 7 for detailed results and
Table 8 for the confusion matrix summarizing the reference-standard and DSS-classification
results of the tested patients).

Table 7. Reference standard classification (from DBT-guided VAB and follow-up, and DSS classifica-
tion, for each single patient included in the study.

# Patient DBT-Guided VAB and Follow-Up
(Reference Standard Classification) DSS Classification

1 Benign (B2) High risk of malignancy
2 Malignant (B5a) High risk of malignancy
3 Malignant (B5b) High risk of malignancy
4 Benign (B2) High risk of malignancy
5 B3 (Negative at follow up) Low risk of malignancy
6 Malignant (B5a) High risk of malignancy
7 Malignant (B5a) High risk of malignancy
8 Malignant (B5a) High risk of malignancy
9 Benign (B2) Low risk of malignancy

10 Malignant (B5) High risk of malignancy
11 Benign (B2) Low risk of malignancy
12 Benign (B2+B3) High risk of malignancy
13 Malignant (B5) High risk of malignancy
14 Malignant (B4) High risk of malignancy
15 Benign (B2) High risk of malignancy
16 Benign (B2) Low risk of malignancy
17 Malignant (B5a) High risk of malignancy
18 Benign (B2) Low risk of malignancy
19 Benign (B2) High risk of malignancy
20 Benign (B2) Low risk of malignancy
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Table 7. Cont.

# Patient DBT-Guided VAB and Follow-Up
(Reference Standard Classification) DSS Classification

21 Benign (B1) High risk of malignancy
22 Malignant (B5b) High risk of malignancy
23 Malignant (B5a) High risk of malignancy
24 Malignant (B5a) High risk of malignancy
25 Benign (B2) Low risk of malignancy
26 Benign (B2) High risk of malignancy
27 Benign (B1) Low risk of malignancy
28 Benign (B2) Low risk of malignancy
29 Benign (B2) High risk of malignancy
30 Malignant (B5a) High risk of malignancy
31 B3 (Negative at follow up) High risk of malignancy
32 Malignant (B5a) High risk of malignancy
33 Benign (B3) Low risk of malignancy
34 Benign (B2) High risk of malignancy
35 Benign (B1) Low risk of malignancy
36 B3* (Negative at follow up) Low risk of malignancy
37 B3* (Negative at follow up) Low risk of malignancy
38 B3* (Negative at follow up) High risk of malignancy
39 Benign (B2) High risk of malignancy
40 Malignant (B5a) High risk of malignancy
41 Malignant (B5a) High risk of malignancy
42 Malignant (B5b) High risk of malignancy
43 Benign (B2) High risk of malignancy
44 B3 (Negative at follow up) Low risk of malignancy
45 B3* (Negative at follow up) Low risk of malignancy
46 Benign (B2) High risk of malignancy
47 Benign (B1) Low risk of malignancy
48 Malignant (B5a) High risk of malignancy
49 Benign (B2) High risk of malignancy

Table 8. Reference standard and DSS classification results of the tested patients. Number of true
positive (TP) and false positive (FP).

Malignant at Reference
Standard

Benign or Negative at
Reference Standard

High risk at DSS classification 18 TP 15 FP
Low risk at DSS classification 0 FN 16 TN

4. Discussion

Radiomics derive multiple quantitative features from single or multiple medical
imaging modalities and techniques, highlighting image traits that are not visible to the
naked eye and hence potentially significantly augmenting the diagnostic and prognostic
power of medical imaging. This quantitative “big data” approach is a relatively new
discipline showing possible limitless applications in clinical practice and research [28,29].

Radiomics strengths in oncology, however, until now have been frequently demon-
strated for tomographic imaging, being inherently quantitative tools, where radiomics can
provide a comprehensive noninvasive characterization of the whole 3D tumor, defining
what has been named the radiomics signature of the tumor [7]. Among published studies,
radiomics has been increasingly gaining ground to improve cancer diagnosis, monitoring
of treatment response and prognosis, also in the field of breast care [30].

In this work, a radiomic classifier was developed for DBT images on suspected
breast calcifications to predict associated malignancy at needle biopsy with the particu-
lar purpose to reduce FP of DBT. We analyzed a total of 49 breast calcifications detected
at DBT as positive, classified by an expert radiologist according to BI-RADS, and ad-
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dressed to DBT-guided VAB with known histopathologic characterization and follow up at
1–2 years. We used these supervised associations to train an ensemble of ML classifiers to
automatically distinguish malignant from benign cases from their DBT. Such a predictive ra-
diomic classifier achieved an Accuracy, Sensitivity, Specificity, AUC, PPV and NPV of 0.82,
0.78, 0.85, 0.80, 0.74, and 0.88, respectively, according to a nested 10-fold cross-validation
classification. A sensitivity of 78% is currently insufficient to avoid immediate referral to
VAB only on the basis of our radiomic model. However, since such limited performances
have been obtained on a limited cohort of patients, we can expect that our preliminary
classifier could increase its predictive power when a larger sample (labeled by histological
finding and follow up) could be available.

Concerning the application of radiomics to 2D DM for calcifications, very few papers
have been published. Chen et al. [31] proved that a multimodal radiomic model, consisting
of radiomic features from both mammography and dynamic contrast-enhanced magnetic
resonance imaging (MRI), combined with a random forest classifier, showed a Sensitivity
of 83% and a Specificity of 80% at Leave-One-Out validation, performances comparable to
those obtained by our single-modality DBT-based radiomic classier with an ensemble of
random forests. Moreover, our performances were validated with a more robust method
(nested k-fold cross-validation) and tested also with a permutation test.

In literature, radiomics has been also applied to other mammographic techniques
such as contrast-enhanced spectral mammography. Mao et al. [32] published a multicenter
study showing that a radiomics nomogram of contrast-enhanced spectral mammography
was able to predict axillary lymph node metastasis in breast cancer. Other authors showed
correlations between mammographic radiomics features and the level of tumor-infiltrating
lymphocytes in patients with triple-negative breast cancer [33].

A recent study on Chinese patients published by Zhang et al. [34] confirmed the
promises of radiomics combined with DBT to destinguish malignant from benign calci-
fications, showing that, when radiomic features can be extracted from the reconstructed
volume of calcifications and integrated into the 2D radiomic features, the model is able to
reduce the FP rate up to 20%. To be noted, in our work, the number of FP classified by our
radiomic classifier was found reduced by a factor of 5 from the initial number classified by
the expert radiologist, thus effectively reducing the risk of inappropriate biopsies. However,
we must consider that a reduction in FP rate without a contemporary high NPV (over 98%)
has no clinical impact if BI-RADS clinical rules are applied.

In order to account for this, we designed a DSS based on both the radiological classi-
fication (BI-RADS) and the low FP rate achieved by our radiomic classifier on suspected
breast calcifications classified as BI-RADS 3. The final results of such a DSS were very good
(Table 4), showing a reduction by a factor of 2 in FP from the initial expert radiologist, at no
cost of FN, and an improvement in the PPV by 50%, suggesting potential in our approach,
and further validation of these preliminary results with larger datasets. If confirmed by
multicenter studies with large sample size, our DSS could reinforce the decision of BI-RADS
3 category to not send to biopsy but to recall for monitoring or to downscale the diagnostic
category from BI-RADS 3 to BI-RADS 2.

Our study has important limitations. First, the retrospective single-center design,
which made it difficult to obtain a larger sample size useful to train and independently test
both the radiomic classifier and the DSS developed. However, the different examinations
were collected using different DBT units; thus, we can consider the performance of our
model to be somewhat robust with respect to independent DBT systems. Second, our
study suffers from the lack of a temporal and geographical independent dataset to test the
developed models. However, we performed a robust nested k-fold cross-validation on the
radiomic model to avoid using testing data during training, and, as already highlighted
above, a permutation test to assess the statistical significance of our results and to exclude
the presence of false discoveries (p < 0.05). Third, the non-consecutive enrollment of
cases, which does not allow a disease-prevalence interpretation of the PPV and NPV
obtained in our work, although they can be compared quantitatively. Fourth, we should
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consider that the DBT system guiding the VAB was different from the one used for the
first image acquisition and the acquired images. Potential differences between those
images could have influenced the choice of the radiologist performing the VAB (site of
biopsy, number of samplings). However, we must consider that the aim of the VAB is
to sample the target finding identified on the initial DBT images, and a careful breast
positioning and repeated comparison with the initial images are performed to obtain a
precise tissue sampling allowing a pathological examination to be strictly correlated with
the initially detected finding. Moreover, it should be considered that the aim of this work
was to provide a decision-support system to reduce the false positive cases sent to biopsy
using a combination of negative follow-up and final pathology for all cases of negative or
borderline (B1, B2, B3) VAB results.

5. Conclusions

In conclusion, we think that our preliminary results open the way to further research
in radiomics of calcifications on DBT, in particular for reducing FP rate and improving the
diagnostic confidence of suspected malignant patients with a risk stratification approach.
This advantage seems to be particularly useful in our study for the borderline BI-RADS
category as BI-RADS 3 and could be also for BI-RADS 4a in larger studies, providing
suggestions to eventually consider the not immediate need of biopsy referral but alternative
recall for low-risk patients. Increased sample size, integration with clinical as well as
personal and history data may lead to increased performances of radiomic-base classifiers
and DSS in this particular field.
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representative patient with malignant calcification.
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AUC Area Under the Curve
BC Breast cancer
DBT Digital breast tomosynthesis
FP False positive
FN False negative
IBSI International Biomarker Standardization Initiative
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NPV Negative predictive value
PPV Positive predictive value
ROI Region of interest
TP True positive
TN True negative
VAB Vacuum-assisted biopsy
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