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Abstract: We developed a machine learning model based on radiomics to predict the BI-RADS
category of ultrasound-detected suspicious breast lesions and support medical decision-making
towards short-interval follow-up versus tissue sampling. From a retrospective 2015–2019 series
of ultrasound-guided core needle biopsies performed by four board-certified breast radiologists
using six ultrasound systems from three vendors, we collected 821 images of 834 suspicious breast
masses from 819 patients, 404 malignant and 430 benign according to histopathology. A balanced
image set of biopsy-proven benign (n = 299) and malignant (n = 299) lesions was used for training
and cross-validation of ensembles of machine learning algorithms supervised during learning by
histopathological diagnosis as a reference standard. Based on a majority vote (over 80% of the votes to
have a valid prediction of benign lesion), an ensemble of support vector machines showed an ability to
reduce the biopsy rate of benign lesions by 15% to 18%, always keeping a sensitivity over 94%, when
externally tested on 236 images from two image sets: (1) 123 lesions (51 malignant and 72 benign)
obtained from two ultrasound systems used for training and from a different one, resulting in a
positive predictive value (PPV) of 45.9% (95% confidence interval 36.3–55.7%) versus a radiologists’
PPV of 41.5% (p < 0.005), combined with a 98.0% sensitivity (89.6–99.9%); (2) 113 lesions (54 malignant
and 59 benign) obtained from two ultrasound systems from vendors different from those used for
training, resulting into a 50.5% PPV (40.4–60.6%) versus a radiologists’ PPV of 47.8% (p < 0.005),
combined with a 94.4% sensitivity (84.6–98.8%). Errors in BI-RADS 3 category (i.e., assigned by
the model as BI-RADS 4) were 0.8% and 2.7% in the Testing set I and II, respectively. The board-
certified breast radiologist accepted the BI-RADS classes assigned by the model in 114 masses
(92.7%) and modified the BI-RADS classes of 9 breast masses (7.3%). In six of nine cases, the
model performed better than the radiologist did, since it assigned a BI-RADS 3 classification to
histopathology-confirmed benign masses that were classified as BI-RADS 4 by the radiologist.
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1. Introduction

Ultrasound imaging is a key tool in breast care. Indications to breast ultrasound,
recently summarized by the European Society of Breast Imaging (EUSOBI) [1], include
palpable lump; axillary adenopathy; first approach for clinical abnormalities in women
younger than 40 years of age and in pregnant or lactating women; suspicious abnormali-
ties revealed at mammography or contrast-enhanced magnetic resonance imaging (MRI);
suspicious nipple discharge; skin retraction; recent nipple inversion; breast inflammation;
abnormalities at the site of intervention after breast-conserving surgery or mastectomy;
abnormalities in the presence of oncoplastic or aesthetic breast implants. Moreover, when
MRI is not performed, the following indications to breast ultrasound can be considered:
screening high-risk women or women with extremely dense breasts (supplemental to
mammography); loco-regional staging of a known breast cancer; monitoring breast cancers
receiving neoadjuvant systemic therapy. In addition, ultrasound provides an optimal,
cheap, and comfortable guidance for performing needle biopsy for suspicious ultrasound-
detected breast lesions, including those initially detected at digital mammography tech-
niques (two-dimensional, tomosynthesis, or contrast-enhanced mammography) or MRI,
when a sure correlation between the ultrasound finding and the initially detected finding
can be established [2,3].

Indeed, since benign abnormalities (and sometimes also normal breast tissues) are
able to mimic malignancies even on advanced breast imaging modalities and techniques,
tissue sampling represents the best method for confirmation or exclusion of breast can-
cer [2,3]. Thus, in the last decades, percutaneous needle biopsy has been established as
a crucial approach to prevent unnecessary surgery, and reduce associated morbidity as
well as economic and psychological costs associated with suspicious findings finally being
demonstrated to be benign. The European Society of Breast Cancer Specialists (EUSOMA)
includes, among the mandatory quality indicators in breast cancer care [4], the assessment
of the “proportion of women with breast cancer (invasive or in situ) who had a preoperative
histologically or cytologically confirmed malignant diagnosis (B5 or C5)”. For this indicator,
EUSOMA requires a “minimum standard” rate of 85% and a target rate of 90% [4]. The
dark side of the moon of the worldwide practice of percutaneous breast needle biopsy,
mostly performed under ultrasound guidance, is the variable and frequently high rate
of procedures needed to exclude malignancy for findings that finally are revealed to be
benign. To avoid missing cancers, breast radiologists are “forced” to biopsy also many
abnormalities with probably benign features, unless they think that a given lesion in a
given patient, also considering patient-specific risk factors (family and personal history
as well as clinical conditions), has an extremely low probability of being malignant and
that a six-month delayed diagnosis will not impact on patient’s outcome. Using the Breast
Imaging Reporting and Data System (BI-RADS), this means to categorize the lesion as
BI-RADS 3, which should imply a residual cancer probability lower than 2%, against a
cancer probability higher than 2% but lower than 95% (BI-RADS 4) and a cancer probability
higher than 95% (BI-RADS 5) [5]. New approaches aiming at reducing the ultrasound-
guided biopsy rate of benign breast lesions must take into account such a challenging
clinical context.

Machine learning is a methodological approach of artificial intelligence that concerns
building systems that learn based on the data they use. It is widely used in medical
imaging to develop image-driven multivariate systems effective in complex tasks, such as
supporting physicians in clinical decision-making [6]. Radiomics, i.e., the measurement
of a high number of quantitative features from images characterizing size, shape, image
intensity, and texture of identified findings, has been extensively used to train multivariate
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machine learning algorithms to objectively characterize image findings and to predict
diagnosis and prognosis of individual lesions or subjects. In breast cancer care, radiomics
has been applied to a variety of medical image modalities for the aforementioned purposes,
including mammography, digital breast tomosynthesis, ultrasound, magnetic resonance
imaging, and positron-emission tomography combined with computed tomography [7–10],
with good performances and with the advantage of high explainability, in particular when
the radiomic predictors of the models can be compared and interpreted with reference to
semantic predictors previously described in literature. In particular, many features of breast
lesions on ultrasound images are known to be associated with higher or lower probability
of malignancy of a given lesion, as Stavros et al. [11] pointed out in their seminal paper
focused on breast solid masses published more than 25 years ago. These authors described
traditional features such as shape, margins, spatial orientation, absolute signal intensity,
signal intensity relative to the surrounding tissue (the classic hyper-, iso-, and hypoechoic
patterns), and signal heterogeneity, all of them integrated in the BI-RADS lexicon [5].
However, it is difficult for a human reader to attain quantification and integration of such
a wide spectrum of information, whereas it is expected to be best achieved through a
multivariate model of radiomics and machine learning.

Therefore, the aim of our study was to develop and validate a machine learning
model based on radiomics to classify ultrasound-detected suspicious breast masses with
the specific two-fold purpose of providing a second opinion on BI-RADS classification and
of reducing the needle biopsy rate. A high sensitivity combined with a sizable reduction in
the number of false positive cases were the guiding criteria to develop the machine learning
model. The best radiomic predictors were specifically described and interpreted to explain
the model and its results.

2. Materials and Methods

This study retrospectively analyzed the breast biopsy database of the Radiology Unit
at IRCCS Policlinico San Donato (San Donato Milanese, Milan, Italy) and was approved by
the institutional ethics committee (Comitato Etico IRCCS Ospedale San Raffaele, protocol
code “SenoRetro”, first approved on 9 November 2017, then amended on 18 July 2019,
and on 12 May 2021). The acquisition of specific informed consent was waived due the
retrospective nature of the study.

2.1. Study Population and Image Sets

A consecutive series of 926 patients referred for ultrasound-guided core needle biopsy
from 13 January 2014, to 28 May 2019 was retrieved, for a total of 928 ultrasound images of
941 suspicious breast masses according to the judgment of one of four rotating certified
breast radiologists with 4 to 14 years of experience in breast imaging. All ultrasound
images were acquired with one of six ultrasound systems (Esaote MyLab 6100, MyLab
6150, MyLab 6440, and MyLab 7340002, Esaote S.p.A, Genova, Italy; Samsung RS80A,
Samsung Healthcare, Seoul, South Korea; Acuson Juniper, Siemens Healthineers, Erlan-
gen, Germany). After database search, another certified breast radiologist with 34 years
of experience in breast imaging retrospectively reviewed all images to identify the biop-
sied lesion on the ultrasound images, excluding 96 images from 96 women for which a
sure identification of the biopsied mass was not attainable. Ultimately, 821 ultrasound
images of 834 suspicious breast masses from 819 patients (mean age 56 ± 16 (standard
deviation) years) were considered for radiomic analysis and to develop and test the ma-
chine learning model. Histopathology from core needle biopsy or pathology of surgical
specimens was used as a reference standard, with 404/834 lesions (48.4%) proven to be
malignant and 430/834 lesions (51.6%) proven to be benign, for an overall 1.06:1.00 benign-
to-malignant ratio.

A balanced set of randomly sampled ultrasound images from 299 malignant and
299 benign lesions, all from three of the six ultrasound systems (Esaote MyLab 6100, MyLab
6150, MyLab 6440, and MyLab 7340002), were used for the training and internal testing of
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different ensembles of machine learning classifiers, based on the supervised learning of
histopathology as a reference standard (Training and internal testing set). Then, the remaining
images of 123 other lesions (51 malignant and 72 benign according to histopathology),
obtained from two of the ultrasound systems of the Training and internal testing set and
from a third one, were used as first external testing for the best machine learning model
(Testing set I). Finally, the remaining images of the 113 lesions (54 malignant and 59 benign
according to histopathology), obtained from the other two of the six considered ultrasound
systems (Samsung RS80A and Siemens Healthineers Acuson Juniper), were used as second
external testing for the best machine learning model (Testing set II).

2.2. Radiomic-Based Machine Learning Modelling

Radiomic methodology was applied to the 821 included images, according to the Inter-
national Biomarker Standardization Initiative (IBSI) guidelines [12]. For this purpose, the
TRACE4© radiomic platform [13] was used, allowing the whole IBSI-compliant radiomic
workflow to be obtained in a fully automated way. The IBSI radiomic workflow included
(i) segmentation of the suspicious mass to obtain a region of interest (ROI) from each
patient image; (ii) preprocessing of image intensities within the segmented ROI required
to measure radiomic features; (iii) measurement of radiomic features from the segmented
ROI; (iv) the use of such candidate radiomic features to train, validate, and test different
models of machine learning classifiers in the binary classification task of interest (malignant
versus benign discrimination), by the reduction of such extracted features to reliable and
nonredundant features.

More specifically, the workflow in this study was as follows:

1. The segmentation of suspicious masses on all 821 images was performed manually
by a board-certified radiologist with 34 years of experience in breast imaging, using
the TRACE4 segmentation tool. The same radiologist (at a time distance of 8 weeks)
and a second board-certified radiologist with 7 years of experience independently
segmented the masses on a random subsample of 50 images from the training dataset,
fully blinded to histopathology and other segmentations.

2. The preprocessing of image intensities within the segmented ROI included resampling
to isotropic voxel spacing, using a downsampling scheme by considering an image
slice thickness equal to pixel spacing, and intensity discretization using a fixed number
of 64 bins.

3. The radiomics features measured from the segmented ROI were 107 quantitative
descriptors and belonged to different families: morphology, intensity-based statis-
tics, intensity histogram, grey-level co-occurrence matrix (GLCM), grey-level run
length matrix (GLRLM), grey-level size zone matrix (GLSZM), neighborhood grey
tone difference matrix (NGTDM), grey-level distance zone matrix (GLDZM), and
neighboring grey-level dependence matrix (NGLDM). Their definition, computation,
and nomenclature are compliant with the IBSI guidelines, except for the features of
the family morphology, originally designed for 3D images, which were replaced with
ten 2D equivalent features (e.g., 3D features volume and surface were replaced with
2D features area and perimeter, respectively). Radiomic features were selected as
those showing an intraclass correlation coefficient >0.75 among the two intra-observer
and inter-observer segmentations on the random subsample of images described in
point (1), since according to the 95% confidence interval of the intraclass correlation
coefficient estimate, values lower than 0.5, between 0.5 and 0.75, between 0.75 and 0.9,
and higher than 0.9 are indicative of poor, moderate, good, and excellent reliability,
respectively [14]. Steps from (2) to (3) were performed using the TRACE4 Radiomics
tool. Radiomic features were reported by TRACE4 according to IBSI standards.

4. Three different models of machine learning classifiers were trained, validated, and
tested, for the binary classification task of interest (malignant versus benign discrimi-
nation), based on supervised learning, using histopathology as a reference standard.
For each model, a nested k-fold cross-validation method was used (k = 10, 8 folds
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for training, 1 fold for tuning, 1 fold for hold-out testing, random sampling). The
first model consisted of 3 ensembles of 100 random forest classifiers combined with
Gini index with majority-vote rule; the second model consisted of 3 ensembles of
100 support vector machines (linear kernel) combined with principal components
analysis and Fisher discriminant ratio with majority-vote rule; the third ensemble
consisted of 3 ensembles of 100 k-nearest neighbor classifiers combined with principal
components analysis and Fisher discriminant ratio with majority-vote rule. Data for
the ensemble learning set were selected by using 100 baggings based on random
sampling without replacement (80% data for training, 10% data for tuning, 10% data
for internal testing). Each classifier belonging to the same ensemble was tested inter-
nally on datasets that can not have data samples in common. Classifiers belonging to
different ensembles were tested on datasets that can have samples in common. The
performances of the 3 models were measured across the different folds (k = 10) in
terms of sensitivity, specificity, area under the receiver operating characteristic curve
(ROC-AUC), positive predictive value (PPV), negative predictive value (NPV), and
corresponding 95% confidence intervals (CI). The model with the best performance
according to ROC-AUC was chosen as the best classification model for the binary task
of interest (malignant versus benign discrimination).

For the best classification model, a study of the percentage of the votes of the classifiers
in an ensemble to have a valid prediction (concordance on predicted class higher than a
qualified majority) of benign and malignant lesions was performed during cross-validation
in order to maximize sensitivity. Ultimately, this machine learning model was tested on the
two external datasets (Testing set I and Testing set II).

Relevant radiomic predictors were selected as those radiomic features most frequently
chosen by the machine learning classifiers as the most relevant ones during the cross-
validation of the ensembles. For random forest classifiers, the mean importance of each
radiomic feature was obtained by each random forest classifier during validation on out-
of-bag samples. For support vector machines and k-nearest neighbor classifiers, the mean
weight coefficient of each radiomic feature was obtained as explained by each principal
component selected by the classifier through a grid search on validation samples.

2.3. BI-RADS Diagnostic Categories Classification

When the percentage of the votes of the classifiers in the best ensemble had a valid pre-
diction of benign lesions (concordance on predicted benign class higher than the qualified
majority), the ensemble assigned the BI-RADS 3 category. Similarly, when the percentage of
the votes of the classifiers in the best ensemble had a valid prediction of malignant lesions,
the ensemble assigned the BI-RADS 4 or 5 category according to the level of concordance
of the majority of support vectors in the ensemble. For each of the breast masses of the
Testing set I (123 masses), the certified breast radiologist with 34 years of experience in breast
imaging accepted or modified the BI-RADS category assigned by the best ensemble (best
model), blinded to histopathology. The class agreement and disagreement were assessed
on a case-by-case basis using histopathology as reference standard. Of course, in this
assessment, BI-RADS categories 1 (no abnormalities), 2 (benign lesions), 0 (inconclusive ex-
amination), and 6 (known malignancy) were not considered due to the design of the study.
The class agreement and disagreement of the random subsample of images, resegmented
by the board-certified radiologist with 34 years of experience (intra-observer agreement)
and by the board-certified radiologist with 7 years of experience (inter-observer agreement),
were assessed on a case-by-case basis using the first segmentation of the board-certified
radiologist with 34 years of experience as reference standard. For each comparison between
reference standard segmentation and the two resegmentations, mean DICE indices were ob-
tained. In addition, for this assessment, BI-RADS categories 1 (no abnormalities), 2 (benign
lesions), 0 (inconclusive examination), and 6 (known malignancy) were not considered due
to the design of the study.
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2.4. Statistical Analysis

Statistical analysis was conducted with embedded tools of the TRACE4 platform. To
describe the distribution of each of the most relevant features in the malignant and benign
classes, we calculated their medians with 95% CIs and presented violin plots and boxplots.

A nonparametric univariate Wilcoxon rank-sum test (Mann–Whitney U test [15])
was performed for each of the relevant radiomic predictors to verify its significance in
discriminating malignant from benign lesions. To account for multiple comparisons, the
p-values were adjusted using the Bonferroni–Holm method and the significance levels were
set at 0.05 (*) and 0.005 (**) [16].

3. Results
3.1. Study Population and Image Sets

Table 1 details the histopathological classification of the 834 suspicious breast le-
sions included in the study, while Table 2 lists technical information about the acqui-
sition of the 821 ultrasound images that depicted these 834 lesions and their distribu-
tion into image sets used for all phases of the machine learning model development.
A total of six different ultrasound systems were considered, four from the same vendor,
the other two from different vendors, with an overall mean image pixel size ranging from
0.062 mm to 0.106 mm. The study population comprised 13 males and 806 females, aged
56.0 ± 16.1 years (mean ± standard deviation).

Table 1. Histopathology of the 834 breast masses included in the study.

Malignant or Benign Histopathology Type Number Percentage

Benign

Fibroadenoma 146 34.0%
Sclerosing lesions/adenosis 64 14.9%

Normal breast tissue 38 8.8%
Inflammatory lesions 36 8.4%
Papilloma (no atypia) 27 6.3%

Cysts, ductal ectasia, or seromas 37 8.6%
Usual ductal hyperplasia 17 3.9%

Atypical ductal hyperplasia 8 1.9%
Fibroadenomatoid changes 23 5.3%

Other benign findings 34 7.9%
Total 430 100%

Malignant

Invasive ductal carcinoma 304 75.2%
Invasive lobular carcinoma 42 10.4%

Ductal carcinoma in situ 19 4.7%
Other malignancies originating

from breast tissues 35 8.7%

Other malignancies (metastases
from non breast tissues) 4 1.0%

Total 404 100%

3.2. Radiomic-Based Machine Learning Modelling

Since 107 radiomic features were found stable among the two intra-observer and
inter-observer segmentations on the random subsample of images, they were calculated
(intraclass correlation coefficient range: 0.758–1.000) and used to train (nested k-fold cross-
validation) and externally test the machine learning ensembles.

The ensemble of support vector machines resulted to be the best system for the task
of interest, i.e., discrimination between biopsy-proven benign versus malignant lesions,
performance comparison for all ensembles being shown in Tables S1–S3. C parameter
values of support vector machines were found in the range of 0.0010–0.0183 (grid search
method). A majority vote >80% of machines to have a valid prediction of benign lesions
and a majority vote >50% of machines to have a valid prediction of malignant lesions
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warranted a sensitivity >94% during both training and external testing, which is the crucial
performance to be warranted for ultrasound examination of suspicious breast lesions
(Figure 1), allowing however a reduction of 15%–18% in the number of the needle biopsies
that resulted in benign histopathology; this consensus was chosen as a qualified majority
vote for the task of interest in this specific clinical context. Interestingly, as depicted in
Figure 1, the sensitivity was >96% on images from different ultrasound systems but from
the same vendor (Training and internal testing set and Testing set I).

Table 2. Technical details and composition of the three image sets.

Dataset US System US
Images

Total
Lesions

Mean Pixel Size
(Range) (mm)

Malignant
Lesions

Mean Pixel Size
(Range) (mm)

Benign
Lesions

Mean Pixel Size
(Range) (mm)

Training and
internaltesting

Esaote MyLab 6100 273 277
0.098

156
0.103

121
0.092

(0.046–0.154) (0.046–0.154) (0.046–0.139)

Esaote MyLab 6150 311 318
0.091

142
0.095

176
0.088

(0.046–0.123) (0.046–0.123) (0.046–0.123)

Esaote MyLab 6440 2 3
0.068

1
0.068

2
0.068

(0.068–0.068) (0.068–0.068) (0.068–0.068)

Testing set I

Esaote MyLab 6100 59 59
0.091

20
0.094

39
0.090

(0.046–0.109) (0.062–0.108) (0.046–0.108)

Esaote MyLab 6150 63 63
0.097

31
0.101

32
0.092

(0.048–0.139) (0.048–0.139) (0.062–0.123)

Esaote MyLab 7340002 1 1
0.106

0 – 1
0.106

(0.106–0.106) (0.106–0.106)

Testing set II

Samsung RS80A 86 86
0.065

44
0.068

42
0.062

(0.040–0.110) (0.050–0.110) (0.040–0.090)
Siemens

Healthineers
Acuson Juniper

26 27
0.067

10
0.069

17
0.066

(0.030–0.080) (0.060–0.070) (0.030–0.080)

US, ultrasound.

Figure 1. Ensemble of support vector machines: proportion of correctly predicted benign and
malignant lesions versus percentage of voting from the support vector machines.

Performance metrics of this high-sensitivity machine learning model in the Training and
internal testing set (10-fold cross-validation) were sensitivity 95.7% ** (95% CI: 92.7–97.7%),
NPV 78.3% ** (65.8–87.9%), PPV 53.2% ** (48.8–57.4%), and specificity 15.7% ** (11.8–20.3%).
As detailed in Table 3, also presenting comparisons of PPV and specificity with those
achieved by the radiologists, performances of the machine learning model in the exter-
nal Testing set I were sensitivity 98.0% (89.6–99.9%), NPV of 92.9% (66.1–99.8%), PPV
45.9% ** (36.3–55.7%), and specificity 18.1 ** (10.0–28.9%). Performances in the external



Diagnostics 2022, 12, 187 8 of 18

Testing set II were sensitivity 94.4% (84.6–98.8%), NPV of 75.0% (42.8–94.5%), PPV of
50.5% ** (40.4–60.6%), and specificity 15.3% ** (7.2–27.0%).

Table 3. Performances of the ensemble of support vector machines in the external testing datasets.

Performance Metric Testing Set I Testing Set II

SVM sensitivity (95% CI) 98.0% (89.6%–99.9%) 94.4% (84.6%–98.8%)
SVM NPV (95% CI) 92.9% (66.1%–99.8%) 75.0% (42.8%–94.5%)
SVM PPV (95% CI) 45.9% ** (36.3%–55.7%) 50.5% ** (40.4%–60.6%)
Radiologists’ PPV 41.5% ** (32.7%–50.7%) 47.8% ** (38.3%–57.4)

SVM specificity (95% CI) 18.1% ** (10.0%–28.9%) 15.3% ** (7.2%–27.0%)
Radiologists’ specificity 0.0% 0.0%

SVM, support vector machines; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive
value. ** indicates a p-value < 0.005, calculated considering chance/random classification. Note: the 0% radi-
ologists’ specificity is an obliged result determined by the inclusion of breast masses that were all referred to
ultrasound-guided core needle biopsy.

Principal components analysis and Fisher discriminant ratio reduced the 107 IBSI-
radiomic features, measured from each breast lesion of the Training and internal testing
set, to an average of 12 (range 7−17) independent principal components for each support
vector machine of the ensemble. The top 25 most relevant radiomic predictors selected by
such model from the 107 IBSI-compliant features are shown in Table 4, together with their
IBSI feature family and feature nomenclature, and ranked according to their frequencies
among the most relevant ones in the support vector machines of the ensemble. Results
from univariate statistical rank-sum tests are also reported with adjusted p-values. The
violin plots and boxplots of the first 15 radiomic predictors are shown in Figure 2, while
the violin plots and boxplots of the other 10 radiomic predictors are shown in Figure S1.

Table 4. Ensemble of support vector machines. Top 25 most relevant predictors sorted in descending
order of relevance.

Rank Feature Family Feature
Name

1 Morphology Perimeter-to-area ratio **
2 Morphology Maximum diameter **
3 Morphology Compactness **
4 Morphology Acircularity **
5 Morphology Perimeter **
6 Morphology Area **
7 Morphology Center of mass shift **
8 Morphology Circularity *
9 Neighborhood grey tone difference matrix Strength **
10 Neighborhood grey tone difference matrix Coarseness **
11 Neighborhood grey tone difference matrix Contrast
12 Neighborhood grey tone difference matrix Busyness *
13 Grey-level size zone matrix Zone size non-uniformity **
14 Grey-level size zone matrix Grey-level non-uniformity glszm **
15 Neighboring grey-level dependence matrix Dependence count non-uniformity **
16 Neighboring grey-level dependence matrix Low-dependence low-grey-level emphasis
17 Grey-level run length matrix Grey-level non-uniformity
18 Grey-level run length matrix Run length non-uniformity
19 Intensity-based statistics Minimum
20 Intensity-based statistics Energy
21 Intensity-based statistics Variance
22 Intensity-based statistics Quartile coefficient
23 Intensity-based statistics 10th percentile
24 Intensity histogram 10th percentile
25 Grey-level co-occurrence matrix First measure of information correlation

* denotes statistical significance at 0.05 (adjusted with Bonferroni–Holm correction). ** denotes a statistical
significance at 0.005 (adjusted with Bonferroni–Holm correction).
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Figure 2. Ensemble of support vector machines: violin plots and boxplots of the most relevant
radiomic predictors ranked from 1 to 15. Green: benign class. Red: malignant class. ** denotes a
statistical significance at 0.005 (adjusted with Bonferroni–Holm correction).

Figures 3 and 4 depict examples of breast masses according to histological diagnosis,
as classified by the developed radiomic-based machine learning system. ROIs manually
defined by the expert breast radiologist to segment the suspicious lesion are overlapped
on the corresponding images. The 107 measured IBSI-compliant radiomic features are
reported for these lesions in Table S4.

3.3. BI-RADS Diagnostic Categories Classification

Tables 5–7 show the distribution of the BI-RADS categories with respect to histopathol-
ogy groups as assigned by the ensemble of support vector machines to the breast masses of
the Training and internal testing set (598 masses), Testing set I (123 masses), and Testing set
II (113 masses). Errors in BI-RADS 3 category assignments by the model were 0.8% and
2.7% in Testing set I and Testing set II, respectively.

The certified breast radiologist with 34 years of experience in breast imaging accepted
the BI-RADS classes of 114 masses (92.7%) and modified the BI-RADS classes of 9 breast
masses (7.3%) (Table S5). In six of nine cases, the model performed better than the radi-
ologist did, since it assigned BI-RADS 3 to masses benign according to histopathology
while the radiologist assigned BI-RADS 4. Two breast masses, malignant according to
histopathology, were classified by the model as BI-RADS 4 while the radiologist assigned
a BI-RADS 5 classification. These masses were invasive ductal carcinomas according to
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histopathology; thus, the radiologist assigned a more appropriate class of malignancy. The
last mass was a granular cell tumor at histopathology, usually considered benign, to whose
mass both the model and the radiologist assigned a wrong malignancy BI-RADS class
(BI-RADS 4 and 5, respectively); however, we must consider that from a therapeutical point
of view, this type of tumor (a rare entity derived from Schwann cells) is aggressive and
locally recurrent, therefore requiring surgical excision with curative intent [17].

Figure 3. Representative examples of two benign lesions according to histological diagnosis, as
classified by the developed radiomic machine learning system. First row (a): true negative (benign
lesion correctly classified as < 2% likelihood of cancer); second row (b): false positive (benign
lesion incorrectly classified as > 2% likelihood of cancer). ROIs were manually defined by the
expert breast radiologist to segment the suspicious breast lesion. Radiomic features: (a) compactness
0.807; acircularity 0.113; center of mass shift 3.495; zone size non-uniformity 743.6; (b) compactness 0.718;
acircularity 0.181; center of mass shift 4.458; zone size non-uniformity 2255.5. Histopathology: (a) cyst;
(b) fibroepithelial proliferation.
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Intra-observer agreement (board-certified breast radiologist with 34 years of experience
in breast imaging) in the model classification of BI-RADS was 96% (48/50), with a mean
DICE index of 89.7% ± 5.0%. Inter-observer agreement (board-certified breast radiologist
with 7 years of experience in breast imaging versus certified breast radiologist with 34 years
of experience in breast imaging) in the model classification of BI-RADS was 92% (46/50),
with a mean DICE index of 87.0% ± 9.9%.

Figure 4. Representative examples of two malignant lesions according to histological diagnosis, as
classified by the developed radiomic machine learning system. First row (a): true positive (malignant
lesion correctly classified as >2% likelihood of cancer); second row (b): false negative (malignant
lesion incorrectly classified as <2% likelihood of cancer). ROIs were manually defined by the expert
breast radiologist to segment the suspicious breast lesion. Radiomic features: (a) compactness 0.569;
acircularity 0.326; center of mass shift 3.997; zone size non-uniformity 2600.2; (b) compactness 0.614;
acircularity 0.276; center of mass shift 5.861; zone size non-uniformity 2209.0. Histopathology: (a) invasive
ductal carcinoma; (b) papillary carcinoma.
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Table 5. Ensemble of support vector machines: BI-RADS diagnostic categories predicted for breast
masses of the Training and internal testing set according to histopathology groups.

Histopathology Type BI-RADS 3 (%) BI-RADS 4 (%) BI-RADS 5 (%)

Fibroadenoma 8 (1.3) 93 (15.6) 0 (0.0)
Sclerosing lesions/adenosis 10 (1.7) 37 (6.2) 2 (0.3)

Normal breast tissue 6 (1.0) 26 (4.3) 1 (0.2)
Inflammatory lesions 2 (0.3) 26 (4.3) 0 (0.0)
Papilloma (no atypia) 1 (0.2) 17 (2.8) 0 (0.0)

Cysts, ductal ectasia, or seromas 10 (1.7) 13 (2.2) 0 (0.0)
Usual ductal hyperplasia 2 (0.3) 9 (1.5) 0 (0.0)

Atypical ductal hyperplasia 0 (0.0) 0 (0.0) 0 (0.0)
Fibroadenomatoid changes 2 (0.3) 13 (2.2) 0 (0.0)

Other benign findings 8 (1.3) 93 (15.6) 0 (0.0)

Invasive ductal carcinoma 5 (0.8) 211 (35.3) 6 (1.0)
Invasive lobular carcinoma 2 (0.3) 32 (5.4) 1 (0.2)

Ductal carcinoma in situ 4 (0.7) 10 (1.7) 0 (0.0)
Other malignancies originating

from breast tissues 2 (0.3) 24 (4.0) 0 (0.0)

Other malignancies (metastases
from non breast tissues) 0 (0.0) 1 (0.2) 1 (0.2)

Table 6. Ensemble of support vector machines: BI-RADS diagnostic categories predicted for breast
masses of the Testing set I according to histopathology groups.

Histopathology Type BI-RADS 3 (%) BI-RADS 4 (%) BI-RADS 5 (%)

Fibroadenoma 2 (1.6) 19 (15.4) 0 (0.0)
Sclerosing lesions/adenosis 1 (0.8) 5 (4.1) 0 (0.0)

Normal breast tissue 0 (0.0) 3 (2.4) 0 (0.0)
Inflammatory lesions 2 (1.6) 4 (3.3) 0 (0.0)
Papilloma (no atypia) 2 (1.6) 4 (3.3) 0 (0.0)

Cysts, ductal ectasia, or seromas 2 (1.6) 6 (4.9) 0 (0.0)
Usual ductal hyperplasia 0 (0.0) 4 (3.3) 0 (0.0)

Atypical ductal hyperplasia 3 (2.4) 5 (4.1) 0 (0.0)
Fibroadenomatoid changes 0 (0.0) 1 (0.8) 0 (0.0)

Other benign findings 1 (0.8) 8 (6.5) 0 (0.0)

Invasive ductal carcinoma 1 (0.8) 40 (32.5) 0 (0.0)
Invasive lobular carcinoma 0 (0.0) 3 (2.4) 0 (0.0)

Ductal carcinoma in situ 0 (0.0) 2 (1.6) 0 (0.0)
Other malignancies originating

from breast tissues 0 (0.0) 4 (3.3) 0 (0.0)

Other malignancies (metastases
from non breast tissues) 0 (0.0) 1 (0.8) 0 (0.0)

Table 7. Ensemble of support vector machines: BI-RADS diagnostic categories predicted for breast
masses of the Testing set II according to histopathology groups.

Histopathology Type BI-RADS 3 (%) BI-RADS 4 (%) BI-RADS 5 (%)

Fibroadenoma 1 (0.9) 23 (20.4) 0 (0.0)
Sclerosing lesions/adenosis 2 (1.8) 7 (6.2) 0 (0.0)

Normal breast tissue 0 (0.0) 2 (1.8) 0 (0.0)
Inflammatory lesions 1 (0.9) 1 (0.9) 0 (0.0)
Papilloma (no atypia) 1 (0.9) 2 (1.8) 0 (0.0)

Cysts, ductal ectasia, or seromas 1 (0.9) 5 (4.4) 0 (0.0)
Usual ductal hyperplasia 1 (0.9) 1 (0.9) 0 (0.0)

Atypical ductal hyperplasia 0 (0.0) 0 (0.0) 0 (0.0)
Fibroadenomatoid changes 1 (0.9) 6 (5.3) 0 (0.0)

Other benign findings 1 (0.9) 3 (2.7) 0 (0.0)
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Table 7. Cont.

Histopathology Type BI-RADS 3 (%) BI-RADS 4 (%) BI-RADS 5 (%)

Invasive ductal carcinoma 1 (0.0) 40 (35.4) 0 (0.0)
Invasive lobular carcinoma 0 (0.0) 4 (3.5) 0 (0.0)

Ductal carcinoma in situ 1 (0.9) 2 (1.8) 0 (0.0)
Other malignancies originating

from breast tissues 1 (0.9) 4 (3.5) 0 (0.0)

Other malignancies (metastases
from non breast tissues) 0 (0.0) 1 (0.9) 0 (0.0)

4. Discussion

In this study, we described the development and validation of a radiomic-based
machine learning model aimed at predicting the BI-RADS category and reducing the
biopsy rate of ultrasound-detected suspicious breast masses, using a series of 821 images
of 834 suspicious breast lesions from 819 patients referred to ultrasound-guided core
needle biopsy. Of note, the dataset is characterized by a nearly balanced 1.06:1.0 benign-to-
malignant ratio according to histopathology, indicating a high level of expertise in lesion
selection, already avoiding the biopsy of a large number of benign lesions. The distribution
of the histopathology types was expected, considering that lesion selection was based on
ultrasound detection, with a very high proportion, among malignancies, of invasive ductal
carcinomas (over three quarters), as already reported in similar series [18,19].

Three ensembles of machine learning supervised classifiers were trained using a bal-
anced image set of 299 benign and 299 malignant lesions. The ensemble of support vector
machines, based on a qualified majority vote of over 80% for predicting the benign nature
of the suspicious masses, showed an over 94% sensitivity (BI-RADS 4–5), allowing to avoid
more than 15–18% of biopsies of benign lesions (BI-RADS 3). Interestingly, these perfor-
mances remained substantially stable when transitioning from internal cross-validation
to two external validation sets, with an over 96% sensitivity on images from different
ultrasound systems from the same vendor (Training and internal testing set and Testing set I).

The ability of individual radiomic features to discriminate malignant from benign
masses deserves some comments in relation to the classic BI-RADS descriptors [5,20]. This
is a crucial point in terms of explainability to radiologists (and patients as well) of the
machine learning model output.

The selected radiomic predictors are able to capture shape, margins, and ultrasono-
graphic pattern of suspicious masses consistently with BI-RADS ultrasound descriptors.
Morphological predictors such as compactness and acircularity quantify the deviation of
the lesion area from a representative ellipse and circle, respectively, thus being able to
distinguish oval and round shape from irregular shapes, the latter more frequent for
malignant masses.

The higher values of the center of mass shift predictor in malignant lesions highlight the
more asymmetric spatial distribution of intensities for these lesions. These aspects fit well
with findings previously reported by Fleury and Marcomini [21], who noted how lesion
shape and margins emerged as the most promising BI-RADS features in distinguishing
between benign and malignant lesions.

Several texture predictors showed higher values for malignant than for benign lesions,
expressing echo-pattern heterogeneity (captured by different non-uniformity features
obtained from different texture matrices, i.e., busyness, zone size non-uniformity, grey-level
non-uniformity glszm, and dependence count non-uniformity). In addition, the higher values of
the texture features coarseness and strength for benign lesions express the tendency for more
homogeneous ultrasonographic textural patterns as indicated by BI-RADS descriptors [5].

Less than 1% of masses were wrongly categorized as BI-RADS 3 in the external Testing
set I, less than 3% in the external Testing set II. Moreover, of the 123 breast lesions of the
external Testing set I, 114 (92.7%) were categorized in the same class by both the model and
the expert radiologist, thus showing the possibility of using the tool as an “expert” second
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opinion. Of note, considering the nine disagreement cases, the model assigned the correct
benign class to six masses, confirming its potential in reducing the biopsy rate of benign
masses. The remaining three masses were classified by both the model and the expert
radiologist as positive cases, with BI-RADS 4 given by the model, and BI-RADS 5 given
by the radiologist, resulting in the same clinical effect, i.e., referral to biopsy. Two were
invasive ductal carcinomas, not needing comments. The other was instead a rare entity
(a granular cell tumor, usually considered benign but deserving surgery [17]) that can be
considered an “expected” false positive case.

It is important to take into consideration the design of this study, which included only
ultrasound-detected breast lesions that underwent ultrasound-guided core needle biopsy.
In other words, the large number of lesions considered frankly benign at a qualitative ob-
servation by the breast radiologists, i.e., those judged to be associated with null likelihood
of cancer (BI-RADS 2, mainly being well-circumscribed anechoic cysts or nonmodified
homogeneously hypoechoic fibroadenomas, both of them with regular margins and fre-
quently also posterior enhancement) did not enter this model training dataset. In addition,
this series included both symptomatic and asymptomatic breast masses (as common for
consecutive series of ultrasound-detected breast masses in real-world clinical practice), the
former having a larger size than the latter. This is mirrored by morphological differences
between malignant and benign lesions captured by predictors—such as the maximum diame-
ter, perimeter, and area—found to be larger for the malignant lesions than for benign lesions,
reflecting this real-world clinical practice scenario.

In order to validate the clinical utility of our model, its diagnostic performances must
be contextualized in the clinical decision-making of “to biopsy or not to biopsy” a lesion
detected at breast ultrasound. This decision should take into account the high incidence
of breast cancer in the female population (in advanced countries, one out of every nine
women experiences a breast cancer diagnosis during her lifetime [22–24]) and the increase
in cancer probability due to the ultrasound detection of a suspicious lesion, as shown by
the experience of targeted ultrasound of mammography-detected [25–27] or MRI-detected
lesions [28]. Regarding the inherently high probability of malignancy, we should consider
that, in the original consecutive series considered in this work, 451 of 941 lesions (47.9%)
were malignant, and that this rate was substantially maintained after technical exclusions
due to not sure lesion identification (404 of 834, 48.4%). This context gives a relevant
clinical value to the only apparently low specificity (15−18%) provided by our machine
learning model, which was still able to maintain an over 94−98% sensitivity. These results
measure the potential clinical advantage of the model, meaning the avoidance of about 1 of
6 biopsies of benign lesions even in this selected series (with about 50% of malignancies).
Notably, all the machine learning model specificity represents a net gain when compared
with the 0% radiologists’ specificity (Table 3), obliged by the study design, including only
biopsied lesions.

In a recent work [29], a commercially available artificial intelligence system based on
artificial neural networks was used to evaluate ultrasound-detected breast lesions (classified
according BI-RADS categories, from 2 to 5), obtaining a 98% sensitivity, a 97% NPV, and
a 64% PPV. Their series was not limited to biopsied lesions only (as was in ours), and the
inclusion also of frankly benign lesions (BI-RADS 2) intrinsically increased the specificity
of human readers (and of any machine learning model). Indeed, as already observed for
diagnostic studies applying breast MRI [30], when considering series solely comprising
lesions with histopathology as reference standard, the specificity obviously results to be
relatively low, because the benign lesions were suspected to be cancer at a degree to
deserve biopsy.

This context can also be further understood considering four large-scale series of breast
needle biopsies including 3054 [31], 2420 [32], 20,001 [33], and 22,297 lesions [34], for a total
of 47,772 lesions. The proportions of benign lesions were 54.8%, 44.3%, 51.5%, and 72.6%,
respectively, the last series showing that there is no trend in favor of the reduction of the
biopsies of benign lesions. Thus, any tool working in this direction is welcome to clinical
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practice and could be used as a second opinion for clinical decision-making in favor of
six-month follow-up (as per the BI-RADS 3 diagnostic category, which was introduced
with the aim of avoiding biopsy of too many benign lesions) instead of immediate needle
biopsy (as per BI-RADS diagnostic categories 4a or higher [5]). Of course, this possibility,
occurring in a real-world clinical scenario, should be sustained by a top-level sensitivity
(such as the one achieved by our model) combined with an overall BI-RADS 3 NPV ideally
higher than 98%, yielding less than 2% false negative BI-RADS 3 lesions, as recommended
by the BI-RADS guidelines [5]. Of note, the NPVs of our model are lower than 98% (78.3%,
92.9%, and 75.0% for the Training and internal testing set, the external Testing set I, and the
external Testing set II, respectively), but it regards only on BI-RADS 3 lesions, which were
all referred to needle biopsy, since our series did not include BI-RADS 3 lesions sent to
six-month follow-up. These follow-up cases should have been added to have the overall
BI-RADS 3 NPV.

To better clarify the value of our results, we should consider the breast cancer epidemi-
ology at large. According to the International Agency for Research on Cancer [35], in 2020,
a total of 2,261,419 new breast cancers were diagnosed worldwide. We can consider that
the average rate of benign lesions reported by the four aforementioned large series [31–34]
is 29,235 of 47,772 (61.1%), rounded to 60% (meaning a 40% malignancy rate), and that
the majority of breast needle biopsies are performed under ultrasound guidance (with at
least a 70% estimate [2,18,36,37]). Even applying a tool providing only a 15% additional
specificity, we could already save about 356,000 biopsies, i.e., 15% of the 2,375,000 needle
biopsies of benign lesions performed worldwide under ultrasound guidance every year.

The value of our tool could be much greater when used in conjunction with the
physician’s evaluation. There are indeed already some studies that demonstrate an increase
in physician performance when the decision whether to perform a biopsy or refer to follow-
up is made with the support of decision systems based on AI models predicting the risk
of malignancy of a lesion. For example, in the experience reported by Zhao et al. [38],
the feasibility of a deep learning-based computer-aided diagnosis (CAD) system was
explored in order to improve the diagnostic accuracy of residents in detecting BI-RADS 4a
lesions. The authors evaluated the improvement obtained by downgrading BI-RADS 4a
lesions identified by radiologists to possibly benign lesions as per CAD prediction. The
sensitivity of the integrated results remained at a relatively high level (>92.7%), while the
specificities of all residents significantly improved after using the results of CAD, rising
from 19.5%–48.7% to 46.0%–76.1%. Similarly, Barinov et al. [39] showed that through simple
fusion schemes, they could increase performance beyond that of either their CAD system
or the radiologist alone, obtaining an absolute average PPV increase of ~15% while keeping
original radiologists’ sensitivity. Especially less-experienced radiologists could benefit
from a CAD system for the diagnosis of ultrasound-detected breast masses, as shown by
Lee et al. [40], who compared the evaluation of 500 lesions performed by five experienced
and five inexperienced radiologists, with and without CAD; the diagnostic performance of
the inexperienced group after combination with CAD result was significantly improved
(ROC-AUC: 0.71; 95% CI: 0.65–0.77) compared with the diagnostic performance without
CAD (ROC-AUC: 0.65; 95% CI: 0.58–0.71).

However, we should also consider that the final decision to biopsy or to follow-up
an ultrasound-detected breast lesion also depends on factors other than ultrasound image
characteristics, i.e., on family and personal history of the patient (including the absence
of presence of symptoms), and the possible preceding lesion detection on other imaging
techniques such as mammography/tomosynthesis or MRI. In this study, we did not take
into consideration these different indications to breast ultrasound. In addition, also the
patient’s psychological condition plays a relevant role in the final decision-making. From
this viewpoint, the improvement of clinical decision-making that can be obtained using
our model could be estimated in a prospective clinical study and/or in a retrospective
reader study, where BI-RADS classes are assigned by our model (based on the consensus of
votes expressed by the support vector classifiers of the best ensemble) and then proposed
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to physicians (e.g., the highest consensus for malignancy leads to the highest likelihood
of cancer, i.e., BI-RADS 5). Regarding the role of the BI-RADS 3 category in this study, we
highlight that here we considered only lesions that underwent needle biopsy, not those that
were sent to follow-up and finally downgraded to BI-RADS 2 (for example, for reduction in
size), with no possibility to obtain histopathology reference standard. Hence, the potential
benefit of the AI tool system could be explored in followed-up lesions with final benign
outcome, to assess the role of the model in this specific setting.

A limitation of this study is related to the origin of its patient cohort (a University
Hospital located in Northern Italy), which is therefore composed of lesions observed
in European Caucasian subjects. While the ultrasound appearance of benign and ma-
lignant lesions should not be different in other ethnicities, the different structure of the
breast (e.g., Asian women have breasts denser than those of Caucasian women [41–43])
could influence the relation between the lesion and the surrounding tissue: an isoechoic
lesion surrounded by fat may be a hypoechoic area surrounded by gland parenchyma.
However, considering that our model takes into consideration absolute and not relative sig-
nal intensities, we do not expect different performances. A further consideration concerns
the choice, adopted in this work, of classical machine learning methods combined with
handcrafted image features. We did not consider using a deep learning approach, although
it could improve our results and avoid manual segmentation of the masses, because we
aimed to provide clinicians with image predictors easy explainable and interpretable with
respect to BI-RADS semantic predictors.

In conclusion, in this study, a specifically developed machine learning model based
on radiomics to predict the malignant or benign nature of ultrasound-detected suspicious
breast lesions was first trained and cross-validated on 598 images of pathology-proven
benign or malignant lesions, then underwent independent external validation on 236 other
images. Such a model was proven to be effective in predicting BI-RADS 3, 4, and 5 classes
and potentially clinically useful in providing an over 15% reduction of the biopsy rate of
lesions finally revealed as benign, while still warranting very high sensitivity. This system
can be used in a clinical context as a decision support system to support radiologists in
the assignment of BI-RADS classes and toward decision-making regarding short-interval
follow-up versus tissue sampling for suspicious breast lesions.
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