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A B S T R A C T   

Purpose: Artificial intelligence (AI) models are playing an increasing role in biomedical research and healthcare 
services. This review focuses on challenges points to be clarified about how to develop AI applications as clinical 
decision support systems in the real-world context. 
Methods: A narrative review has been performed including a critical assessment of articles published between 
1989 and 2021 that guided challenging sections. 
Results: We first illustrate the architectural characteristics of machine learning (ML)/radiomics and deep learning 
(DL) approaches. For ML/radiomics, the phases of feature selection and of training, validation, and testing are 
described. DL models are presented as multi-layered artificial/convolutional neural networks, allowing us to 
directly process images. The data curation section includes technical steps such as image labelling, image 
annotation (with segmentation as a crucial step in radiomics), data harmonization (enabling compensation for 
differences in imaging protocols that typically generate noise in non-AI imaging studies) and federated learning. 
Thereafter, we dedicate specific sections to: sample size calculation, considering multiple testing in AI ap
proaches; procedures for data augmentation to work with limited and unbalanced datasets; and the interpret
ability of AI models (the so-called black box issue). Pros and cons for choosing ML versus DL to implement AI 
applications to medical imaging are finally presented in a synoptic way. 
Conclusions: Biomedicine and healthcare systems are one of the most important fields for AI applications and 
medical imaging is probably the most suitable and promising domain. Clarification of specific challenging points 
facilitates the development of such systems and their translation to clinical practice.   

1. Background 

Artificial intelligence (AI) models are playing an increasing role in 
biomedical research and clinical practice, displaying their potential in 

several applications such as risk modelling and stratification, personal
ized screening, diagnosis (including classification of molecular disease 
subtypes), prediction of response to therapy, and prognosis [1]. These 
ground-breaking advances might yield a clinical impact by integrating 
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multiple data flows from heterogeneous sources [2]. These sources 
include medical images, which constitute the largest part of patients’ 
data (in particular for oncologic patients), but also disease risk factors, 
multiomics data, therapy procedures/regimens, and follow-up data. The 
effective integration of these sources in models leading to high- 
performance healthcare services will facilitate the convergence of 
human intelligence and AI sides [3,4]. All these research fields could 
greatly enhance the current trend toward precision medicine, resulting 
in more reliable and personalized approaches with high impact on 
diagnostic and therapeutic pathways [5]. This implies a paradigm shift 
from the definition of statistical and population-based outlooks to in
dividual predictions [6], allowing for more effective preventive actions 
and therapy planning. 

However, even though several guidelines have been already pub
lished on the development and usage of AI models [7–14], potential AI 
strategies are many and varied. Challenges and points to be better 
clarified do exist on “how to develop AI applications” as clinical decision 
support systems. 

Consequently, we will focus herein on: the differences between the 
radiomic application domain, based on classic machine learning (ML) 
models and deep learning (DL) models, using multi-layered artificial 
neural networks, in particular convolutional neural networks (CNNs); 
specific AI issues for sample size calculation; procedures for data 
augmentation to work with limited and unbalanced datasets; data cura
tion; interpretability of AI models (the “black box” issue). The section 
about data curation will include crucial technical steps such as image 
labelling, image annotation (with segmentation as a crucial step in radio
mics), data harmonization (enabling compensation for differences in 
imaging protocols that typically generate noise in non-AI imaging 
studies) and federated learning. 

Finally, together with some conclusive remarks, we provide pros and 
cons of choosing ML versus DL, along with some recommendations and 
references to existing software tools for AI developers and users, as well 
as essential take-home messages to the readers. 

2. Methods and architectures for AI applications 

Two different architectures and associated typical workflows can be 
implemented to develop AI applications in medical imaging (Fig. 1): (i) 
classic ML, exploiting hand-crafted features, namely radiomic features 
[15,16] extracted from segmented images; and (ii) DL, using deep 
feature extraction or end-to-end learning from images. However, ML and 
DL share general concepts, such as supervision and training, that must 
be clarified before considering specific aspects of the two approaches. 

2.1. Supervised learning versus unsupervised learning 

In AI-based classification systems, the most popular among learning 
processes is supervised learning, in which the training of the classification 
model is performed by presenting “labeled” training data (data samples 
coupled to their corresponding class or label of interest) to the learning 
system. The task of the learning system is then to find a relation that 
maps each input of the training set (the data) into an output (the label). 
In medicine, input data can include medical images or clinical data, 
while the output label can be, for example, the disease diagnosis, the 
patient condition (e.g., the disease stage at a given follow-up time), the 
outcome after therapy (e.g., recurrence, survival). Once such a rela
tionship has been learned (i.e., training phase), it can be used to classify 
new input data with unknown label into one of the classes of interest 
defined during the training phase [17]. 

In contrast to supervised learning, in unsupervised learning no training 
data is coupled to any pre-existing class or label of interest, possibly 
because of a lack of this information. The learning system is then fed 
with a set of training data, and its task is to search for undetected patterns 
that can separate these data into subsets of similar samples under given 
characteristics. Once these subsets and their characteristics have been 
detected and learned (training phase), new input data can be classified 
into one of the classes of interest that have been implicitly defined 
during the learning process itself (i.e., the testing phase) [17]. 

Relevant examples of both supervised and unsupervised learning 
algorithms are given throughout this review. It must be noted that other 
approaches can also be used, such as semi-supervised learning, in which 
only part of the training data is labeled, making this approach a combi
nation of supervised and unsupervised learning [17]. 

2.2. Training, validation, and testing 

As introduced in the previous paragraph, the implementation of a 
classification model involves at least two phases, training and testing. 
The training phase is the one in which the learning of the classification 
model itself takes place. Data used in this phase are called training data, 
independently from the use of a supervised or unsupervised approach. To 
obtain a model with generalization abilities, i.e., well-performing when 
applied to new data, the training data must be in a sufficiently large 
number and representative of the “general” population, i.e., of the 
population on which the system will be tested and, finally, potentially 
applied in a clinical perspective [18]. 

The testing phase is the one in which the model learned during the 
training phase is used or tested on new samples. Data used in this phase 
are called testing data, and the performance of the model in correctly 
classifying these data is called testing performance. Of note, it is para
mount that none of the samples included in the training data is used also 

Fig. 1. Typical architecture and workflow of artificial intelligence systems for predictive modelling: a) classic machine learning, with the various processing steps 
involving hand-crafted features such as in radiomics; b) deep learning considering either deep medical image feature extraction or end-to-end learning. 
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during the testing phase, as this would invalidate the testing performance 
[18]. 

To improve the learning performance, and when the available sam
ples are enough in number, it is useful to introduce a third phase be
tween the training and the testing phases, which is called validation. In 
this phase, the model parameters learned during the training phase are 
tuned and optimized to maximize a given metric (e.g., its classification 
performance). Such parameters may include the number of variables 
used or their relative weight. Data used in this phase are called validation 
data, and the performance of the model in correctly classifying these 
data is called validation performance. It is important noting that the 
testing performance represents the final performance of the model, i.e., 
the one that demonstrates the ability of the learned model to work on the 
general population [18]. 

2.3. Classic machine-learning models 

According to Fig. 1a, the predictive modelling based on classic ML 
techniques starts from the extraction of large-scale hand-crafted features 
after regions of interest (ROIs) or volumes of interest (VOIs) have been 
either manually or (semi-)automatically delineated in the image seg
mentation process. This emerging research field, recently named 
“radiomics” [15], involves the extraction of mineable features from 
medical images to non-invasively characterize the in vivo phenotype of 
lesions or even simply of tissue portions (e.g., the apparently normal 
tissue surrounding a tumor) [16], capturing the ROI/VOI characteristics 
by morphometric measurements (i.e., size, shape, and diameter), as well 
as by measurements of tissue or function texture heterogeneity 
(including first-, second-, and higher-order statistical descriptors). 

2.4. Radiomic application domain 

Radiomic features are often not robust against medical-image 
acquisition parameters, such as spatial resolution (in-plane resolution 
and through-plane resolution, i.e., slice thickness) [19,20] and image 
extraction settings (e.g., quantization, resampling) [21,22]. Moreover, 
radiomic features can be dependent on the software package used to 
extract them [23]. 

These issues have been addressed by the Image Biomarker Standard
ization Initiative (IBSI) [24], which provided standardized definitions of 
radiomics features, computation, normalization, and nomenclature, also 
recommending how to implement the different steps of a radiomic 
workflow, including data conversion in standardized units, post- 
acquisition image processing, image segmentation, data interpolation, 
resegmentation (i.e., procedure that involves only the pixels within a 
specified gray value range for radiomic feature calculation within the 
ROI/VOI), and intensity discretization. Their description is out of the 
purpose of the present review, being most of them well defined in the 
IBSI guideline [24]. Once features are computed and normalized, feature 
selection processes must be devised specifically for the radiomic 
domain, in order to define robust imaging biomarkers [25]. To this aim, 
the selection process should perform: (i) elimination of unreliable fea
tures (for instance via the intraclass correlation coefficient); (ii) elimi
nation of not informative features based on zero and near-zero variance; 
and (iii) elimination of redundant features (e.g., those which are highly 
correlated to each other). After these preprocessing steps, a further 
feature selection step aims at identifying the most relevant predictive 
features [26,27]. 

Importantly, all these techniques can deal with the “curse of 
dimensionality” and also reduce model overfitting, thus increasing the 
generalizability of the model. Feature selection methods can be sub
divided into three classes: (i) filter methods, which leverage either sta
tistical correlation or information theory-based metrics to assess the 
usefulness of a given feature subset; (ii) wrapper methods, which optimize 
the predictive model performance evaluating feature combinations 
using a search algorithm (e.g., recursive feature elimination, sequential 

feature selection, metaheuristics); (iii) embedded methods allowing for 
feature selection as a part of the model, such as in the case of least ab
solute shrinkage and selection operator (LASSO) or elastic net regularization 
methods (ElasticNet). Among these methods, wrapper methods are 
powerful but computationally burdensome [28]. Indeed, they rely upon 
the evaluation of classification performance for obtaining the optimal 
feature subset: this search in the feature space is a non-deterministic 
polynomial-time hard (NP-hard) problem. Exhaustive search methods 
are computationally intensive and unfeasible for large-scale datasets, 
thus search methods and metaheuristics are typically used to find sub
optimal solutions in the search space [29]. Importantly, due to multiple 
statistical comparisons the repeated estimation of the accuracy 
employed in feature subset selection may cause overfitting in the feature 
subset space, thus hindering generalization abilities [30]. 

After obtaining a subset of reliable, nonredundant, and relevant 
features from these selection steps, the predictive model has still to be 
defined. This can be achieved by multivariable classification or regres
sion methods according to the clinical question at hand [25,31], typi
cally in supervised learning settings. The choice of either classification 
or regression approaches depends on whether the response (target) 
variable is categorical or continuous, respectively. It is worth noting that 
regression analysis can be used in classification tasks when binary or 
multinomial logistic models are employed. Alternatively, unsupervised 
clustering techniques can be used to identify intrinsic properties and 
patterns of input data (for instance, class grouping based on similarity 
metrics). 

Validation of radiomic models represents another crucial phase. 
Although the performance of this step choice might depend on the 
available data quantity, it is fundamental to avoid the use of the same data 
for both model training and testing. Ideally, an independent dataset should 
be used as external test set. However, this is often not possible, and a 
single cohort must often be exploited for both model development and 
testing. Several strategies are available and can be used for this purpose. 

One of the possible methods is the hold-out approach, which splits the 
whole dataset in one training set and one testing set (generally, 70% 
versus 30% or 80% versus 20%, respectively). This partitioning might be 
either random or based on a criterion (e.g., temporal or center 
independence). 

Other schemes, such as cross-validation (CV) strategies can be used. 
Leave-one-out CV (obtaining high variance and low bias) and k-fold CV 
are the most used schemes. Leave-one-out is often used when very few 
data are available to develop a ML model, but this method should be 
avoided because of its high variability, being based on a single obser
vation. Of note, k-fold CV overcomes leave-one-out limits and improves 
the use of the available dataset compared to the hold-out method: the 
dataset is subdivided into k mutually exclusive folds of approximately 
equal size, allowing for a higher statistical validity [25]. The results for 
all the k-fold rounds are averaged, with a decreased dependency on the 
initial random split of the dataset, compared to the hold-out strategy. 

The use of a nested k-fold scheme (with outer and an inner CV loops) 
is the most rigorous method allowing for model training independently 
from optimizing model hyperparameters [31]. Indeed, the hyper
parameter selection by means of a non-nested k-fold scheme could yield a 
biased model, providing overoptimistic performance, since the selection 
of a model without nested k-fold CV implies using the same data to tune 
model hyperparameters and evaluate model performance, with poten
tial overfitting on the training data and poor generalization ability. 

Importantly, radiomic features can be integrated with additional 
information (e.g., demographic data, risk factors, molecular data) to 
improve the predictive performance of the model. This integration is 
easiest with hand-crafted features, since supplemental data can be added 
in the ML model as additional features. In particular, multimodal im
aging [32] and multiomics data [33] can be added to a model to better 
characterize the underlying pathophysiology of the analyzed image re
gion. A Radiomics Quality Score [34] has been recently proposed to 
measure the quality of radiomic-based AI models, considering the 
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different steps occurring within the radiomic workflow. While there is 
still no consensus on its validity, it can usefully guide developers and 
users on verifying the completeness of the different features and tests to 
be implemented for providing an effective AI model. 

2.5. Deep learning models 

DL models (Fig. 1b) offer the opportunity to automatically extract 
imaging features to maximize model performance for the task at issue. 
DL is a specific subfield of ML that employs artificial neural networks, 
allowing to directly process raw data [35]. Indeed, deep neural networks 
enable the development of end-to-end predictive models by performing 
all the processing steps usually involved in the design of a classic ML 
model, including feature extraction and learning (see Fig. 1a). 

Deep neural networks are representation-learning algorithms 
composed of a stack of processing layers with a finite number of 
nonlinear units (i.e., artificial neurons). The first and the last layer of the 
network are defined as input and output layers, respectively, while all 
layers stacked between them are called hidden layers. The multi-layered 
structure of deep neural networks allows them to serve as nonlinear 
function approximators, able to learn different representations of the 
input data at multiple levels of abstraction [36]. Depending on the 
number of layers and units per layer, a DL model can easily reach mil
lions of trainable parameters to be estimated during the training process. 
DL models are therefore prone to overfitting, especially when dealing 
with relatively small training sets, and are best applied to datasets of at 
least thousands of images [37]. 

Due to its ability to model very complex relationships within large 
datasets, DL has been largely applied in medical imaging and radiation 
oncology [38], with specific applications in the medical imaging domain 
including both large and small image datasets, although with different 
implications. 

Among different neural network architectures, CNNs are the most 
used for medical-image processing tasks. These networks are charac
terized by the presence of convolutional layers between the layers of 
neurons, convolving an input image with a given kernel function. In 
CNNs, different convolution layers can be implemented according to the 
application purpose, since the weights of convolutional layers being 
learned during training can extract imaging features tailored to the 
investigated task. Compared to fully connected neural networks, in 
CNNs the same kernel parameters are applied to the entire image, thus 
reducing the overall number of trainable parameters and making the 
training process more efficient. Depending on input and output data 
dimensionality, one-, two, or three-dimensional convolutional kernels 
can be employed. 

Pooling layers are another key component of CNNs architecture: they 
reduce feature map resolution to introduce translational invariance to 
minor image distortions. Moreover, the combination of convolutional 
and pooling layers allows for learning spatial hierarchies among feature 
patterns [39]. 

The stack of linear (convolution) and nonlinear (activation) pro
cessing layers operates as a feature extractor, progressively increasing 
the level of abstraction, invariance, and discriminative power across 
layers [40]. After this processing, these features are then combined by 
either a series of fully connected layers or by other classic ML algorithms 
that perform the learning task (Fig. 1b). 

Convolutional, pooling, and activation layers are not the only 
possible components of CNN architectures. Due to the modular structure 
of CNNs, several architectures have been proposed combining CNN with 
other types of neural networks. End-to-end CNN architectures that 
directly map images to a target class have been used to perform image 
classification tasks for both screening and diagnosis purposes. In 
particular, several CNN architectures originally trained on large natural 
image datasets, such as ImageNet, have been employed for medical 
image classification by fine-tuning pretrained layers to address data 
sparsity issues [41]. Introduced in 2015, the U-Net architecture is still one 

of the most used CNN architectures for medical image segmentation. The 
base U-Net architecture is composed of symmetrical encoder and decoder 
paths connected using skip connections. Originally proposed to process 
two-dimensional images, it has been modified to obtain voxel-wise 
segmentation from three-dimensional images [42,43]. Then, to further 
improve network performances, several variants of this network have 
been developed by adding residual, attention, or DenseNet blocks to train 
deeper networks, select salient features, and solve gradient vanishing 
issues, respectively [44]. The above-mentioned architectures represent a 
brief introduction to the broad spectrum of available architectures: a 
detailed taxonomy of CNN architectures is out of the purpose of the 
present article but can be found in the recent review by Khan et al. [45]. 

Recurrent neural networks (RNNs) have also been combined with 
CNNs to extract spatial–temporal features from imaging data series. 
These networks allow for processing new data (e.g., image series of any 
size) while being aware of previous inputs and outputs by sharing node 
weights across time. However, model complexity is directly proportional 
to the size of input data, making RNNs difficult to train and prone to 
overfitting. To address vanishing/exploding gradient issues and allow to 
memorize long term information, gated recurrent units and Long Short- 
Term Memory (LSTM) units have been introduced [46]. 

Autoencoders also play a pivotal role among unsupervised DL archi
tectures, learning in an unsupervised way how to reproduce the input 
data. In these networks, the use of progressively smaller hidden layers in 
the encoder path, regularization, and sparsity constraints, allow to learn 
a lower-dimensional representation of the data, thus preventing the 
network from learning the identity transformation (i.e., the trivial so
lution) [38]. More recently, generative adversarial networks (GANs) [47] 
have been widely used for medical image processing due to their ability 
to model data distribution and generate realistic datasets. GANs involve 
the interaction of two adversarial networks, where a network generates 
new realistic data by learning data distribution from training samples, 
and the other network discriminates between fake and real data. The 
interaction of these adversarial networks improves overall GAN perfor
mance and generates realistic image data (i.e., adversarial training 
framework). Despite their innovative design, these networks are usually 
challenging to train due to vanishing/exploding gradient issues and are 
prone to generating new data with similar appearance (i.e., model 
collapse) [48]. 

After selecting the proper network architecture, the hyperparameter 
tuning represents a non-trivial step. Designing the correct architecture is 
challenging, since several structural hyperparameters, such as the 
number of layers/neuronal units, the receptive field size (the region in 
the input space that a particular CNN’s feature is looking at), and the 
activation functions can strongly affect model performance [49]. 

During learning, the network parameters are optimized to solve a 
specific task. To this aim, a backpropagation algorithm of the error 
adjusts the parameters of the network to minimize a loss function that 
represent the cost function of the network. The adjustment is based on 
the change of gradient of the loss function with respect to network pa
rameters. To improve this process, several optimizers have been pro
posed. Along with the stochastic gradient descent, most of them employ 
adaptive learning rates to improve global minimum detection in com
plex optimization problems [50]. Moreover, input image normalization, 
as well as the use of batch normalization layers standardizing the 
automatically extracted deep features, have shown to help training 
convergence and prevent covariate shift [51]. 

The depth of the network should increase with the complexity of the 
investigated task. However, very deep neural networks are prone to the 
problem of vanishing/exploding the gradients, a problem that effec
tively prevents the weights from changing values during training, which 
may cause very long training time or failure to converge, respectively. 
The use of Rectified Linear Unit (ReLU) activation function, proper 
initialization techniques and skip connections may partially mitigate 
this issue [52]. Since excessive increase in model complexity may also 
result in overfitting, several regularization techniques can be used to 
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improve model generalizability, such as L1 and L2 regularization, batch- 
normalization, dropout, early stopping, and data augmentation tech
niques. These techniques can be combined to take advantage of the 
complementary effects of different approaches, as detailed in a 
comprehensive overview [53] of the most frequently adopted regulari
zation techniques and of their effects on DL model performance. 

Regarding the design choices, the “no free lunch” theory demon
strates that each model requires a specific hyperparameter setting to 
maximize its performance on a specific task [54]. Therefore, hyper
parameter tuning represents a utterly needed albeit challenging and 
time-consuming step, which requires the continuous evaluation of 
model prediction error on training and validation datasets to find out the 
acceptable tradeoff between overfitting and underfitting. To find the best 
hyperparameter set, several approaches can be used. Traditional ap
proaches range from exhaustive to random and multistep hyper
parameter search, while more recently proposed approaches include 
automatic hyperparameter optimization algorithms, that reduce the 
burden of hyperparameter tuning on the model design process. In this 
scenario, reinforcement learning [55] and metaheuristic algorithms 
[56] represent promising alternatives to trial-and-error approaches. 
Still, the evaluation of DL model performance must mandatorily be done 
on the test set, which represents the only independent and external data 
set that can ensure model generalizability. 

2.6. Deep learning in the medical image application domain 

Training and evaluating deep neural networks in medical images can 
be more challenging than radiomic analysis with ML, mainly for the 
frequent lack of availability of a sufficient number of well-labelled 
medical image data. To solve this issue, image augmentation and trans
fer learning techniques can be used [57]. In this light, GANs can be used 
to generate synthetic additional training instances [58]. 

Alternatively, deep transfer learning techniques, which relax the hy
pothesis that training and testing data comes from the same probability 
distribution, allow avoiding training DL models from scratch. Deep 
transfer learning techniques have been classified into four categories: 
instances-, mapping-, network-, and adversarial-based, as detailed by 
Tan et al. [59]. 

Other ways to address the lack of properly annotated data is to use a 
semi-supervised or a weakly-supervised approach. In fully-supervised 
learning, labeled instances are used to train, validate, and test a DL 
model, while weakly-supervised approaches allow the exploitation of 
partially- or weakly-labelled data. Such strategies involve the use of 
partially labelled datasets (incomplete supervision), coarse-grained 
labelled datasets (inexact supervision), and datasets with not-only 
ground-truth labels (inaccurate supervision) [60]. Finally, recent ad
vancements in DL research highlight the potential of self-supervised or 
unsupervised pre-training strategies: in self-supervised approaches, labels 
are automatically retrieved from data [61], while in unsupervised ap
proaches imaging features are extracted without labels [62–64]. 

Both for DL and for ML, in the growing framework of personalized 
and precision medicine, another important challenge is the integration 
of different data modality features into a single model. This issue is 
particularly relevant when imaging and clinical data must be integrated 
with other omics data in a single DL model. In this light, the review 
article published by Li et al. [65] offers a comprehensive survey of 
available integration strategies, starting from ML but also covering 
multimodal DL integration strategies. 

Along with adversarial learning applications to data augmentation and 
transfer learning, adversarial attacks are worth to be mentioned. The 
preparation of adversarial samples – by applying small modifications to 
the medical imaging samples that are close to the decision boundaries 
learned by a classifier [66] – might affect DL-based computer-assisted 
diagnosis systems [67], but also radiomics-based models [68]. Indeed, 
small changes to the pixel data might suitably change the values of some 
radiomic features that influence the downstream analyses. This problem 

cannot be ignored in reliable computer-assisted diagnosis systems that 
have to be employed in the clinical practice. 

Considering the ever-increasing expansion of AI-focused literature in 
medical imaging, a guide for the development of reliable DL models for 
medical image analysis (Checklist for Artificial Intelligence in Medical 
Imaging, CLAIM), including recommendations on AI models generaliz
ability and reproducibility, has been recently proposed [69]. 

3. Data quantity in AI applications 

3.1. Sample size 

In a typical AI classification task in oncologic imaging, an AI model 
aims to distinguish benign from malignant lesions using an imaging 
biomarker or radiomic features potentially associated with lesion 
characterization. In this case, distributions of malignant lesions are ex
pected to be different from those of benign lesions, classically substan
tiated by a p-value [70]. 

AI applications usually involve hundreds or even thousands of sta
tistical hypothesis tests. This largely increases the probability of false 
discoveries, i.e., associations/correlations that lead to a statistically 
significant p-value, historically set at < 0.05, but are not actually true. 
For example, if one thousand statistical tests are performed at an alpha 
(type I) error of 0.05, 50 false discoveries would appear, on average. To 
mitigate this phenomenon, much lower significance thresholds could be 
adopted in these peculiar contexts [70]. The false discovery rate is 
intimately connected to the sample size: the larger the latter, the lower 
the former, and vice versa. Thus, the sample size is the major determinant 
of an AI model performance: small sizes of the training and test sets are 
sources of bias and contribute to the variance of a model performance 
[71,72]. 

In classical statistics, methods for sample size determination are well 
established for the several possible contexts (study design, outcomes, 
null hypothesis, etc.) that substantially build around the formula: 

n =

(
Zσ
E

)2 

This equation provides the size n for a desired error rate (E) and 
variance (σ); Z is the Z-distribution value for a given level of confidence. 
However, the above formula does not take into consideration any of the 
peculiar characteristics of AI modelling. Indeed, methods for calculating 
the required sample size in AI applications remain unclear and many 
researchers simply follow the Widrow-Hoff learning rule [73], the 
empiric rule for multivariate analysis that suggests ten data (patients) for 
every imaging feature that will be used in the model. This rule, however, 
may come up with a too small or too large sample size, depending on the 
context. 

More analytic approaches for sample size calculation in the medical 
imaging field have been recently assessed in a systematic review by 
Balki et al. [74], where different methods were categorized into model- 
based (i.e., based on algorithm characteristics) and curve-fitting methods 
(i.e., empirically evaluating model performance at selected sample 
sizes). Model-based methods are built on the assumption that training 
and test samples are chosen from the same distribution. One was 
postulated by Baum and Haussler [60] for single hidden-layer feedfor
ward neural networks with k units and d weights. This method predicts 
that for a classification error ε (0 < ε < 1/8), a network trained on m 
samples with the fraction 1-ε/2 of the samples correctly classified, 
would approach a classification accuracy of 1-ε on an unseen test set, 
with the condition that m ≥ O(d/ε⋅log2(k/ε)). Another model-based 
method was proposed by Haykin [61] for whom generalization is valid if 
the condition m = O((d + k)/ε) is satisfied. This method is similar to the 
Widrow-Hoff rule and, in practice, m ≈ (d/ε) [75]. 

Learning curve-fitting methods aim at modeling the relationship be
tween training set size and classification accuracy using an inverse 
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power law function. Fukunaga and Hayes [76] proposed to empirically 
obtain the area under the curve at receiving operator characteristic 
through performance-testing procedures and to plot it against their 
respective 1/Ntrain (Ntrain = number of training images): the performance 
at higher sample sizes is extrapolated by linear regression as Ntrain tends 
to infinity. Although these pseudo methods provide post-hoc sample size 
estimates, an empirical approach has the advantage of accurately 
modelling performance for a specific task, avoiding assumptions on 
distributions. 

Another promising method is based on the Vapnik–Chervonenkis 
(VC) dimension that simply estimates the power of a classification AI 
algorithm [77]. The sample size estimated through this method is based 
on the following equation: 

Pr

(

ETest ≤ ETraining +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

[

D
(

log
(

2N
D

)

+ 1
)

− log
(η

4

)]
√ )

which gives a probabilistic upper bound of test error (ETest) generated 
by an algorithm upon the training error (ETraining); D is the algorithm’s 
VC dimension, N is the sample size, and 0 ≤ η ≤ 1. The sample size for a 
prespecified test error and a known training error may be calculated 
solving the above formula for N. Of course, the lower the desired test 
error, the larger the N. 

In order to explore the performance of the AI system, to assess how 
much it is statistically different from chance, and to exclude the presence 
of false discoveries, it is desirable to apply a permutation test (which 
consists in training, validating, and testing an AI system using randomly- 
permuted gold-standard labels instead of original true labels) at the end 
of the learning-and-classification process [78]. This is particularly useful 
when 1) the size of the training/testing dataset is not high, 2) the training 
and/or testing subsets are not representative of the general population, 
or 3) the training of the AI model is heavily affected by confounding/ 
noisy variables in the training/testing dataset. In all these cases, the 
resulting AI system may be more performant than expected. 

3.2. Data augmentation 

Data augmentation is a data-space solution to the problem of small 
data sets. Several techniques that enhance the size and variety of training 
datasets can be implemented, falling into two general categories: data 
warping and oversampling [79]. 

Data warping transform original images preserving their labels. 
Typical transformations include geometric and color transformations, 
cropping, noise injection [80], filtering [81], as well as mixing images 
together by averaging their pixel values [82] or generating images based 
on Monte Carlo simulated projections [83,84]. Data oversampling create 
synthetic instances in the space of the features (see Section 3.3.). 

A completely different solution for data augmentation is adversarial 
training, i.e., using two or more networks with contrasting objectives 
encoded in their loss functions. Li et al. [85] experimented with adver
sarial training and found improved model performance on original testing 
data enriched with adversarial instances. Following similar principles, 
the aforementioned GANs [47] create artificial instances from a dataset 
such that they retain similar characteristics to the original set. The use of 
GANs in medical imaging has been well documented in a survey by Yi 
et al. [86] and in further published studies applied to computed to
mography (CT) [87], magnetic resonance imaging (MRI) [88], and X-ray 
[89] images. Using GAN-based data augmentation, an improvement in 
classification performance by 4–8% has been reported [90]. However, 
data warping, oversampling and adversarial training can be also used in 
combination, since they are not mutually exclusive: traditional hand- 
crafted data warping techniques can be used in combination with GANs. 

There is still no consensus on the final augmented dataset size to 
achieve for improving an AI model. Over-extensive augmented data can 
cause overfitting of the AI model even worse than before augmentation. 
Thus, a good method is to monitor overfitting during incremental 

augmentation and define the maximum level of data augmentation on the 
maximum training accuracy and minimum loss. 

3.3. Imbalance learning in AI applications 

Another very common issue in biomedical AI applications linked to 
data quantity occurs when data is distributed over different classes with 
a large degree of sample size differences among them. This issue is 
typically due to a lower prevalence of some classes. In developing AI 
application, this issue is known as imbalance learning. 

3.3.1. Data resampling 
Different data resampling approaches can be used to mitigate this 

problem, namely undersampling and oversampling methods. Both types of 
approaches resize the training dataset to achieve a more balanced class 
distribution, matching the size of other class(es): in undersampling, a 
subset of instances is samples from the majority class, while oversampling 
generates artificial samples to supplement the minority class. In case of 
imbalance learning in a multiclass framework, both undersampling and 
oversampling are usually applied in a pairwise scheme among the classes. 

When the number of samples per class leads to discard undersampling 
methods, the following popular oversampling approaches can be used 
[91]. 

Synthetic minority over-sampling technique (SMOTE) is a standard 
benchmark for learning from imbalanced data: synthetic samples 
created in the feature space along segments joining any or all of the k 
minority class nearest neighbors, randomly chosen (for example k = 2) 
[91]. Synthetic samples are generated by: (i) computing the difference 
between the feature vector under consideration and its nearest neighbor; 
(ii) multiplying the difference by a random number in [0, 1]; and (iii) 
adding this quantity to the feature vector under consideration. This 
corresponds to the selection of a random point along the segment be
tween two specific features [92]. Of note, this approach proved suc
cessful in several domains, also inspiring other approaches to counteract 
class imbalance and significantly fostering new semi-supervised learning 
paradigms, such as multilabel classification and incremental learning 
[93]. 

Borderline SMOTE is based on the original SMOTE implementation 
but, rather than generating new samples from all minority class samples, 
first selects all borderline minority samples and, considering this selec
tion, subsequently generates synthetic samples [94]. For every sample in 
the minority class, borderline SMOTE calculates the m-nearest neighbors 
from the whole training set, also determining the number of majority 
samples among these nearest neighbors. If the number of its majority 
nearest neighbors is larger than the number of its minority ones, the 
sample is considered to be easily misclassified and put into a set referred 
to as “danger” [91]. Otherwise, it is considered to be safe or to be noise, 
therefore exiting the oversampling procedure. Minority samples in the 
danger set represent borderline data of the minority class, and synthetic 
samples are finally generated applying the SMOTE algorithm [91]. This 
is the first implementation, referred to as borderline SMOTE1, while a 
second implementation (borderline SMOTE2) generates synthetic sam
ples from each sample in the danger set, considering not only its nearest 
neighbors in the minority class, as SMOTE does, but also from its nearest 
majority neighbor [91]. 

The adaptive synthetic sampling approach (ADASYN) represents 
another improvement of SMOTE, essentially using a weighted distribu
tion for different minority class samples, according to their level of 
difficulty in learning, as described by Haibo et al. [95]. In ADASYN, 
more synthetic data are generated for minority class samples that are 
harder to learn compared to easier-to-learn minority samples [91]. As a 
result, ADASYN reduces the bias introduced by the class imbalance, and 
it shifts the classification decision boundary toward the difficult samples 
[91,95]. 
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3.3.2. Ensemble learning 
This approach employs an ensemble of learners, with each 

composing classifier (Ci) being trained both on a subset of the majority 
class and on a subset of the minority class, still accounting, however, for 
a large portion of the minority class samples [96–98]. Then, decisions 
taken by all Ci on the test sample are combined to obtain a final output 
according to a given rule, such as majority voting [91]. The rationale of 
ensemble learning lies in the observation that an ensemble of classifiers 
generally yields better performance than those obtained by individual 
models [99,100], especially for generalization purposes. Furthermore, 
base classifiers Ci are now trained on more balanced subproblems than 
the original one, also having the desired property of containing samples 
representing different aspects of the original set N [91]. Three popular 
approaches can be described. 

The balanced bagging classifier builds several learners on different 
randomly selected subset of data, balancing each subset of data by 
undersampling the majority class so that the number of selected samples 
matches the number of samples extracted from the minority class [91]. 

Forest of randomized trees is a variation of the original random forest 
method that builds an ensemble of trees induced from balanced and 
down-sampled data. First, for each iteration in random forest, a bootstrap 
sample is drawn from the minority class and, randomly, the same 
number of cases is drawn with replacement from the majority class. 
Second, a classification and regression trees (CARTs) classification process 
is started from the data to maximum size, without pruning. At each 
node, instead of searching through all variables for the optimal split, a 
subset of randomly selected variables is considered. Third, the two 
previous steps are repeated and, after training, the final decision is ob
tained by majority voting on each tree decision [101]. 

XGBoost is an optimized, scalable, portable and distributed imple
mentation of gradient boosting [102], where the ensemble of trees is a 
CART. Deriving from a regularized objectivation of gradient boosting, this 
approach has recently gained much popularity as the algorithm used by 
several teams to win ML competitions [91]. Compared to decision trees, 
the leaf nodes in CARTs store a real-valued score rather than binary 
decision values. In this way, richer interpretations can be attained. 

4. Data curation 

Despite their differences, ML and DL share several challenges. As 
mentioned before, data collection and curation represent fundamental 
steps of data-driven model development [57].Especially in the case of 
medical images, the “garbage-in, garbage-out” principle remains valid 
[103]: the quality of the pool of images provided as input to any pro
cessing algorithm determines the reliability of the results, even for AI 
applications. The quality check of the images used to infer new knowl
edge is a particularly critical point, considering also that AI applications 
need to work on large sample sizes (high data quantity) with medical 
images often acquired in multicenter studies (high data heterogeneity 
due to different equipment, imaging and clinical protocols, etc.). 

The assumption that AI only needs to be fed with random data 
collected and combined on a huge scale can gravely backfire. Incorrect 
datasets can come in many forms, ranging from factually incorrect in
formation to knowledge gaps, incorrect conclusions and, finally, wrong 
clinical indications: an uncurated dataset can be biased, inaccurate, 
unreliable, partially represented, error-ridden, or ambiguous. Using 
uncurated raw datasets was “found to decrease the feature quality when 
evaluated on a transfer task” [64]. 

4.1. Data labelling and annotations 

Data labelling aims at ensuring that the data set works for the model 
target. For example, an AI model based on medical images developed to 
predict different prognostic outcomes will need data labelled as images 
of good or poor prognosis. This step links the images to ground-truth 
information and implies to collect knowledge from histopathology on 

needle biopsy or surgical specimens, from laboratory results, from pa
tients’ clinical records, or even from patients’ follow-up. Such knowl
edge can also represent ground-truth for other tasks such as AI 
applications for automatic first-level screening reading (as in screening 
mammography [104]), when the AI tool provides an immediate 
dichotomic classification into negative cases or recall cases, the former 
to be sent to the next screening round, the latter to be recalled for a 
suspicious lesion assessment.. 

In general, images can be labelled in different ways including 
structured labels, image annotations, and image segmentations [105,106]. 
While structured reporting of diagnostic imaging, as suggested by 
various guidelines, would strongly reduce the effort needed to extract 
labels, most clinical reports still unfortunately remain composed of free 
text [107]. As a result, most centers looking at using retrospective data 
have to manage large volumes of medical images associated to narrative 
reports, whose analysis requires huge efforts. Even though DL itself has 
been proposed for translating free text into structured reports, for 
example in CT pulmonary angiography [108], retrospective report- 
based image labelling is often done manually. 

For instance, image annotations of radiological diagnoses can be done 
by using radiological reporting categories attributed to the lesion(s), 
such as the categories defined by the Breast Imaging Reporting and Data 
System, BI-RADS [109] or by the Prostate Imaging Reporting and Data 
System, PI-RADS [110]. Image annotations are mandatory also when 
informing the algorithm on the location of the lesion(s) or other specific 
tissue regions. 

Groups of scientists have been employed in the past to perform data 
labelling and annotation, including image segmentation [111,112]. During 
competitions, data labelled by consensus are provided by the organizers 
to participants [113], such as in the The Crowds Cure Cancer project 
[114], where hundreds of participants who attended the 2017 and 2018 
meetings of the Radiological Society of North America were involved in 
image labelling tasks for the Cancer Imaging Archive (https://www.canc 
erimagingarchive.net/). 

Another fundamental aspect whose impact is most often under
estimated in AI applications is image segmentation. While DL approaches 
do not always require the preliminary identification of ROIs or VOIs to 
extract imaging features for model training, this step is mandatory for 
radiomics: the more accurate the definition of the area/volume to be 
characterized, the more the extracted quantitative features entering the 
ML model will reflect the biological characteristics of the lesion or 
tissue. 

Years of research on image segmentation algorithms have highlighted 
the aspects to be considered especially when using handcrafted imaging 
features coming from different imaging modalities and techniques, with 
or without administration of contrast agents or radiopharmaceuticals. 
Image segmentation methods are influenced by the characteristics of the 
lesion and of the images under consideration, especially in the case of 
hybrid and multimodal imaging [115]. 

Since the definition of ROIs or VOIs quantitatively impacts the 
radiomic characteristics [115,116] the results of radiomic analyses ob
tained using different segmentation methods can widely differ. To date, 
there is no consensus on the approaches to be used for image segmentation 
in radiomics studies. The IBSI standardization initiative [24] proposes, 
as a good compromise, the use of semiautomatic algorithms, including 
the use of fully automatic methods followed by manual adjustments by 
the operator, speeding up the process but still allowing for human 
correction. Notably, this has consequences on the stability of radiomic 
features: different segmentation/adjusting methods as well as different 
operators can cause variations in the computed radiomic features. 

A strategy against feature instability is to select the radiomics features that 
are statistically stable, by applying different segmentation methods or 
asking different operators to segment images, in repeated (test–retest) 
studies, either on patients [16] or on anthropomorphic phantoms 
[115,117]. Another strategy is to apply moderate random variations on 
segmented ROIs/VOIs provided by a single operator. This process generates 
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different segmentation results, as if they were obtained by different seg
mentation methods or operators, without the need for other annotators 
and without the need to develop and implement alternative segmentation 
methods. 

Image segmentation is required in DL models for image classification 
and object detection. Various image annotation techniques can be used 
with the help of ML algorithms providing bounding boxes, polygon 
annotations, cuboid annotations, and contours circumscribing a target on 
the image. This process, known as semantic segmentation, can enable in- 
depth detection of targeted objects associated with a disease, segmented 
in a single class and in a single process. 

4.2. Data harmonization 

Even when considering a single imaging modality, medical images 
can be acquired using different scanners or with the same scanner but 
with different clinical protocols and/or acquisition/reconstruction 
technical parameters. This leads to variable spatial resolution, contrast- 
to-noise ratio, and temporal resolution in dynamic contrast-enhanced 
studies. The impact of these variations on the robustness of radiomic 
analysis has already been reported. Meyer et al. [118] showed that more 
than 80% of the radiomic features extracted from CT images were found 
not reproducible considering different settings of image reconstruction 
and radiation dose. Similarly, both phantom [115] and clinical studies 
[119] demonstrated that radiomic features from positron emission to
mography (PET) are strongly influenced by reconstruction settings, 
while magnet field strength, type of scanner, and acquisition parameters 
have a similar impact on MRI studies [120–122]. Studies employing DL 
seem to be less limited by this problem, but we are still far from clear 
understanding of whether this is an effect of feature extraction tech
niques [123] or, as already mentioned, of the intrinsically higher sample 
size that reinforces biomedical data robustness and reproducibility 
[103]. Recently, data harmonization techniques have been developed to 
compensate for the aforementioned variations [124]: such methods 
normalize the statistical distributions of the same features when ob
tained from different systems, preserving the information content of 
images [125]. 

4.3. Image intensity normalization, denoising and artifacts corrections 

Another problem that can have a non-negligible impact on image- 
analysis algorithms in both radiomics and DL approaches concerns the 
use of arbitrary units to measure the signal, typically in MRI. In fact, PET 
and CT images have units of measure based on well-defined physical 
processes so that the signal has a quantifiable physiological meaning: 
being calibrated according to agreed standards, a statistically significant 
variation in the signal can be interpreted as a real one. Conversely, MRI 
provides images whose signal is expressed in arbitrary units, hindering 
the comparison of images captured not only in a population study but 
even in longitudinal studies in the same subject. Interesting exceptions 
to this general paradigm are represented by apparent diffusion coeffi
cient (ADC) maps derived from diffusion-weighted sequences [126], T1 
and T2 mapping [127], as well as by MRI fingerprinting [128]. Hence, in 
MRI, denoising and intensity normalization procedures are required before 
extracting quantitative biomarkers from the images for use in AI appli
cations. Different normalization methods have been described: scaling 
and shifting of whole imaging values to fixed intensity range [129]; 
normalizing to whole image mean and standard deviation [130]; 
normalizing to a biologically comparable reference tissue region [131]; 
and adjusting imaging histogram to a reference one [132]. Even if no 
definitive conclusions were obtained, several studies [22,133] have 
shown how these multiparametric MRI image corrections can impact the 
value of radiomic features by improving the performance of AI 
applications. 

Besides image intensity normalization, MRI images can be corrected for 
noise and artifacts. A wide range of denoising methods have been pro
posed: bilateral filtering methods [134]; nonlocal means filtering 
methods [135]; block matching; and three-dimensional filtering 
methods [136] or global filters [137]. Bias field correction (BFC) refers 
to corrections allowing to compensate for magnetic field in
homogeneities, such as the N4ITK algorithm currently employed in most 
radiomics studies to perform BFC [138]. However, no large studies 
specifically addressed the impact of such correction on the AI 
performance. 

Even images that provide quantitative parameters, such as PET 

Fig. 2. Learning performance and explainability of an artificial intelligence system as a function of model complexity.  
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standardized uptake value (SUV) units or MRI ADC maps, are often 
subject to a wide spectrum of physical effects that generate possible 
artifacts. This is a relevant issue for ADC maps [139,140], making this 
“exception” only a relative one. In these cases, radiomics or DL studies 
will benefit from correction methods impacting on the entire image, 
such as those methods compensating physical effects during image 
reconstruction [141]. As pointed out by Litjens et al. [38], image pro
cessing algorithms such as intensity normalization and denoising have not 
yet been widely used in the context of DL algorithms, probably due to 
the large number of images used in DL studies that acts as a compen
sating factor. Still, some studies suggest that these corrections may help 
improving the performance even of DL models [38,103], and we expect 
that their use will increase in the future. 

4.4. Applicability of federated learning 

Along with careful data annotation and harmonization, the potential 
applicability of federated learning deserves to be discussed. Indeed, large- 
scale data collections do not introduce only logistic problems due to the 
exchange of massive datasets across different institutions, but multi
centric and international AI-powered studies have also to deal with strict 
and rigorous regulations regarding ethical and legal aspects of patient 
data exchange [142,143]. As a matter of fact, in medical imaging [144], 
the storage and transfer of the scans is facilitated by the Digital Imaging 
and COmmunication in Medicine (DICOM) standard [145,146]. The 
traditional method of training AI models involves setting up servers 
where models are trained on data, often using a cloud-based computing 
platform. However, an alternative way of model creation has arisen, 
called federated learning, which brings ML to the data source, rather than 
bringing the data to the model. 

In federated learning, trained consensus models are developed 
exploiting data collected by different institutions without the need for 
sharing them and maintaining patient privacy. By implementing a 
decentralized data model and performing computations either by ag
gregation servers or via peer-to-peer systems, this approach offers 
controlled and secure access to large, heterogeneous, and curated mul
ticentric datasets for both development and evaluation purposes 
[144,147]. However, the potential of federated learning requires a huge 

effort from involved participants to ensure high standardization and 
reliability at each step of the model development process, from patient 
enrollment to model evaluation, especially in terms of model general
izability. Regarding the realization of federated learning infrastructures, 
each partner has to assure valuable high-performance computing (HPC) 
resources in terms of hardware, software and network bandwidth [147]. 
As a virtuous side-effect, this need could lead to the substantial 
strengthening of the HPC resources in healthcare environments. 

5. Interpretability of AI applications 

As presented so far, AI applications to medical images have shown 
continuous improvements, both in the implementation of new technol
ogies for learning, automatic classification, and prediction, as well as 
considering the intrinsic performance obtained in various fields. How
ever, the increase in complexity of techniques and developed models 
corresponds to an increased difficulty in understanding the underlying 
learning and classification processes [148]. A typical example of this 
behavior (Fig. 2) can be seen in the translation from ML techniques to DL 
architectures. 

Recently, the need to make AI reasoning transparent and intelligible 
to human readers has strongly emerged, with the aim to see, study, and 
understand how inputs are mathematically mapped into outputs 
[149,150] and to clarify the patterns within the inner mechanisms of AI 
systems. An AI system able to describe its behavior – or the behavior of 
AI-controlled entities – is called eXplainable AI (XAI), a term first intro
duced by Van Lent et al. in 2004 for simulation-game applications [151]. 
The term “explainability” can also be expressed as “understandability” 
[152], “comprehensibility” [153], “intelligibility” [154], or “interpret
ability” [149]: it is however clear from these definitions that the 
development of XAI systems should not in any way affect the classifi
cation/prediction performance of the models, but only their explain
ability, as shown in Fig. 3. 

The need for XAI is particularly pronounced in those fields that 
require high transparency, as is for the biomedical field, where the 
reliability of AI systems in decision making should be strongly docu
mented [155] if their use is proposed to support clinicians and patients 
in their decisions. Other important issues regard the clinical 

Fig. 3. Learning performance as a function of explainability for artificial intelligence (AI) versus explainable artificial intelligence (XAI).  
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interpretation of radiomic features and the need for a biological vali
dation of the found radiomics-based biomarkers [156,157]. Given the 
amount and heterogeneity of available ML and DL algorithms, there is 
no consensus nor standard strategy to implement XAI yet, although some 
potential frameworks have recently been proposed [158]. XAI strategies 
can be grouped based on the learning phase they are applied to and, 
thus, on the information they reveal (the explainable output). The 
following phases are considered: feature reduction (feature extraction 
and selection); learning process (training and prediction); and the 
ensemble of feature reduction and learning process. 

Regarding feature reduction, feature extraction and selection tech
niques are often included within ML systems. Reporting the output of 
this intermediate phase is a way to make the inner mechanisms of the 
system more intelligible. When the output consists of a ranked set of 
extracted/selected features to be used as input for training and predic
tion, the highest-rank features can be interpreted as the most repre
sentative among input data as a function of a given metric. However, this 
can be independent from the specific predictive task of interest, and thus 
uninformative. For example, most papers report the principal compo
nents extracted from the input dataset [159], representing the features 
with highest variance in the input dataset, independently from group 
discrimination. Other feature extraction techniques, such as Independent 
Components Analysis carry similar problems. Conversely, feature 
extraction techniques such as Partial Least Squares Analysis or univari
ate/multivariate techniques, such as Fisher’s discriminant ratio or cor
relation analysis, can take into account the information about group 
discrimination. Moreover, it must be noted that some feature extraction 
techniques do not return a ranked list of extracted features, and thus, 
different explainability strategies should be adopted, such as those 
described below. The output of this phase can then be returned as a list 
of the most representative features of the input dataset (particularly 
useful if the input dataset is composed of non-image variables) or 
mapped into the original input space (particularly useful if the input 
dataset is composed of images). These techniques are easy to implement 
but their level of explainability is low, being limited to the feature 
extraction/selection phase, thus not explaining the subsequent training 
and prediction process. 

Regarding the learning process, training and prediction represent the 
core of an ML system. To make this phase interpretable by humans, 
implemented techniques usually produce a score for each input feature 
according to its importance in the training-and-classification process. In 

this case, the resulting feature importance is specific for a given AI 
classification/prediction task. For example, random forest applies an 
internal optimization technique that minimizes or maximizes a given 
metric (such as Gini impurity or information gain/entropy), thus 
returning an importance score based on the contribution of each feature 
in this optimization process [160]. A similar consideration can be made 
for decision trees. For classifiers based on linear or logistic regression, 
including ElasticNet or LASSO, importance scores are represented by the 
coefficients found for each input variable during the fitting of the 
considered distribution. In support vector machines (SVMs), the weight 
assigned by the SVM classifier to each training sample can be back- 
projected to the original feature space, thus resulting into a score that 
represents the importance of each feature for SVM classification [161]. 
However, this last technique can be implemented only when a linear 
kernel is used [162]. In this second phase the output can be also returned 
as a simple list of features ranked by importance for classification/pre
diction or mapped into the original input space, for example highlighted 
by means of heatmaps. These techniques are characterized by low-to- 
intermediate implementation difficulty and their level of explain
ability is limited to the training-and-prediction phase, not explaining the 
feature-extraction/selection process. 

Finally, newer approaches aim at explaining the AI-system behavior as 
a whole, considering both ML and DL techniques. Compared to ML, 
feature extraction/selection and training/prediction are embedded in a 
wider process, for example an optimization process. This process can be 
iterated to optimize a given metric (e.g., classification area under the 
curve) by varying the number of features given as input to the system. 
Thus, an importance score can be assigned to each feature according to 
the corresponding value of the optimized metric. As such, this technique 
can be used independently of the chosen feature extraction/selection/ 
classification technique, turning AI systems into XAI systems. For 
example, recursive SVMs can be included in this category, as they use an 
iterative procedure to assign an importance score to each input feature 
depending on the entire AI-system performance [163,164]. 

Since deep architectures encompass the entire learning flow, from 
feature extraction to classification, DL algorithms can also benefit from 
XAI, considering the high number of layers in DL architectures, which 
increase unintelligibility for humans. XAI strategies for DL attempt to 
unveil how image decomposition works at different depths, and to map 
this information into saliency/activation maps showing which features 
of a given image contributed most to the decision. The most popular 

Fig. 4. Representative examples of artificial intelligence (AI) tasks in medicine and corresponding AI versus explainable artificial intelligence (XAI) outputs.  
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among these techniques is the Class Activation Map (CAM) [165–168], in 
which maps are produced as a function of the pixel-wise activation in the 
last convolutional layers weighted by the activation contribution to the 
final score of a given class. CAMs can be generated for any output class, 
thus returning interpretable information even related to incorrect clas
sification. Another XAI strategy for DL systems has been proposed by 

Hendricks et al. [169]: the authors trained a CNN to recognize objects in 
images and a language generating Recursive Neural Network was imple
mented to translate the feature importance of the CNN onto words and 
captions. 

Improving model interpretability represents an open challenge in AI 
model development to guarantee their translation ability to the clinical 

Fig. 5. Flow diagram for the design choices in artificial intelligence model development. Each decision block denotes typical practical situations that lead to different 
solutions in both classic machine learning and deep learning models. 
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domain [170–173]. However, we note that XAI techniques explaining 
the AI-system behavior as a whole have a high level of implementation 
difficulty and potentially high computational costs, especially for 
wrapped strategies. Fig. 4 shows two representative examples of possible 
AI tasks in medicine and the corresponding AI versus XAI outputs. 

6. Design choices: ML versus DL 

Unfortunately, there is no “one size fits all” solution to develop a 
reliable AI tool. Depending on the quality and quantity of available data, 
the existence and reliability of labels and annotations, as well as the 
required level of interpretability, AI developers can follow different 
strategies. 

Fig. 5 depicts the main decisions that have to be made during AI 
model development, involving: (i) defining the sample size of the 
available dataset; (ii) assessing whether a previous application domain 
might be adapted to the problem under consideration, (iii) evaluating 
label and annotation reliability; (iv) providing interpretability of model 
results, considering both model logic/behavior and outcome explana
tion [174]. These choices are better structured in Table 1, which com
pares classic ML and DL approaches suggesting ways for optimal 
solutions to the most important challenges of ML and DL applications. 
However, some commercial and open access software tools already offer 
multiple functionalities and provide validated solutions for effectively 
developing AI models in medical imaging without the need of specific AI 
and coding skills. A classification of these software tools according to 
their proposed solution to the issues highlighted in this review can be 
found in the Supplementary Material. 

7. Closing remarks 

In this review, we described the balance between advantages and 
disadvantages of the use of AI, in particular distinguishing between ML 
(with its peculiar application to radiomics) and DL. This knowledge is a 

bridge connecting data scientists (the developers) and clinical users (the 
physicians) in choosing the best solutions to implement specific AI ap
plications, including special advanced research and immediate clinical 
needs. Some pros and cons of ML and DL, both specific for each of the 
two techniques and common to both are presented in Table 2. Four 
topics deserve a final highlight. 

First, when sample size is small, when the predicted class is a label 
expressed as a continuous variable, or when the integration of additional 
data (e.g., risk factors or biological data) to imaging features is required 

Table 1 
Challenges of classic machine learning and deep learning models according to 
decision choices.  

Challenges Classic Machine Learning Deep Learning 

Sample size  • Careful radiomic feature 
robustness and reliability 
analyses  

• Strong feature selection 
process  

• Machine learning model 
selection  

• Data augmentation; transfer 
learning  

• Regularization to improve 
model generalizability  

• Weakly-, semi-, self- 
supervised or unsupervised 
pre-training  

• Modify model architecture 
Medical image 

application 
domain 

Avoiding dependency on the 
data via careful radiomic 
feature robustness analyses 
to avoid overfitting on the 
development set 

Use transfer learning and 
domain adaptation to take 
advantage of pre-trained 
models or labelled instances 
from similar domains 

Label and 
annotation 
reliability  

• Data curation considering 
both segmentation and 
response variables  

• To increase the reliability, 
multiple labels and 
morphological 
perturbations could be 
considered in the feature 
robustness analyses  

• Data curation considering 
multicentric and 
multireader study  

• Use of image-level labels to 
derive pixel/voxel-level 
predictions (inexact 
supervision)  

• Combine a few well- 
labelled instances with 
weakly labelled (inaccurate 
supervision) or unlabeled 
ones (incomplete 
supervision) 

Interpretability High interpretability 
provided by some models (e. 
g., decision trees) and selected 
radiomic features (in terms of 
relevance or importance) 

Adopt interpretability and 
explainability techniques to 
improve model transparency 
during both the design and 
evaluation phases  

Table 2 
Pros and cons and recommendations for choosing machine learning or deep 
learning for application to medical imaging.   

Pros Cons Recommendations* 

ML  • A relatively small 
sample size can be 
used  

• Both discrete and 
continuous variables 
for labelling are 
possible, eventually 
with proper feature 
oversampling  

• Medical image 
application domain 
exists and guides the 
process  

• (IBSI standardized 
features for 
radiomics)  

• Integration with 
additional data is 
possible and easy  

• High interpretability 
is immediately 
provided by some 
models (e.g., decision 
trees) and is 
achievable by other 
algorithms (e.g., 
SVM)  

• Data curation is 
particularly time- 
consuming for 
image segmentation  

• The model must 
be selected among 
the possible 
algorithms (SVM, 
random forest, 
Bayesian, etc.)  

• Nested or wrapped 
validation should be 
performed  

• Avoiding dependency 
on the data via careful 
radiomic feature 
robustness and 
reliability analyses to 
avoid overfitting on the 
development set  

• Apply feature 
harmonization, 
intensity normalization, 
denoising  

• List the selected 
features and the most 
important or relevant 
features for the model 
for explainability 

DL  • Learning curve can 
be used for stopping 
sample size  

• Limited samples can 
be used but with 
transfer learning or 
eventually with 
proper data 
augmentation  

• Suitable for discrete 
variables for labelling  

• Medical image 
application domain 
exists but does not 
guide the process  

• (Use transfer learning 
and domain 
adaptation to take 
advantage of 
pretrained models or 
labelled instances 
from similar 
domains)  

• Harmonization, 
intensity 
normalization, 
denoising could be 
avoided if images 
from variety of 
datasets are present  

• Integration with 
additional data is 
possible but very 
complex  

• Data curation is 
particularly time- 
consuming for 
labelling and anno
tations for image 
semantic 
segmentation  

• The ML model 
must be selected 
among the 
possible neural 
network 
architectures  

• Modify architecture to 
improve the model 
performance  

• Use optimizers in 
training convergence  

• Use regularization to 
improve model 
generalizability  

• Provide the saliency 
map of the activated 
features for 
explainability 

ML = machine learning; DL = deep learning; IBSI = Image Biomarker Stan
dardization Initiative; SVM = support vector machines. 
*From a general point of view, ensemble learning can be useful in several situ
ations, and the Vapnik–Chervonenkis method can be help sample size definition. 
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by the model, ML algorithms working in the radiomic domain should be 
preferred, in agreement with IBSI guidelines. In this case, robust and 
reliable feature selection, harmonization and denoising, as well as nested 
or wrapped validation schemes, should be performed to avoid overfitting 
and to improve statistical significance of relevant features. Selected 
relevant features will be the way to explain the model to users. 

Second, if a pretrained DL architecture already exists for the specific 
domain application, transfer learning can be applied as an alternative to 
radiomics, also in combination with proper data augmentation. When this 
is not possible, if a large and varied sample size is available, DL can be 
used for training from the scratch. The DL architecture should be 
modified and adapted to the desired level of feature learning to improve 
the performance, using optimizers in training convergence and regula
rization in model generalizability. Saliency maps of the activated fea
tures overlapped on original images can explain the model functioning 
to users. 

Third, regarding sample size definition, to avoid subjective assess
ment and encompass the empirical rule of ten samples per feature, the 
Vapnik-Chervonenkis method (see section 3.1) can be used for any AI 
method, being usefully supplemented by a careful monitoring of the 
learning curve of the training samples. 

Fourth, in addition to performance optimization of individual AI 
architectures, a better investment by AI developers and users would be 
the building of combinations of different classifiers, whose overall de
cision can improve the predictive power of each of them taken 
individually. 

To place the technical and practical knowledge presented in this 
article into a more general context, we should consider that awareness 
on the role of AI in human life is only relatively recent. The boost toward 
a more digital and online world prompted by the COVID-19 pandemic 
has only exposed a trend in action since 2015, when AI systems started 
to overcome human readers in image interpretation [175], thanks to the 
massive increase in computational power we witnessed in the last 
decade. 

Biomedicine and healthcare systems are one of the most important 
field for AI applications and medical imaging is probably the most 
suitable and promising domain [35]. When considering the desirable 
general trend toward the so-called “P4 medicine”, based on prediction, 
prevention, personalization and participation, AI tool represents good 
candidates to facilitate this way to the future [176]. The last “P” also, 
which stands for a more extended patient empowerment, could be 
increased by a good use of AI, since human intelligence can improve by 
learning from AI [177], provided that humans have the right knowledge 
and skills. We can start from healthcare professionals who are facing this 
unavoidable revolution. 
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