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Abstract
Purpose  To develop and evaluate the performance of a radiomic and machine learning model applied to ultrasound images 
in predicting the risk of malignancy of ovarian masses (OMs).
Methods  Single-center retrospective evaluation of consecutive patients who underwent transvaginal ultrasound (US) with 
images storage and surgery for ovarian masses. Radiomics methodology was applied to US images according to the Interna-
tional Biomarker Standardization Initiative guidelines. OMs were divided into three homogeneous groups: solid, cystic and 
motley. TRACE4© radiomic platform was used thus obtaining a full-automatic radiomic workflow. Three different classifi-
cation systems were created and accuracy, sensitivity, specificity, AUC and standard deviation were defined for each group.
Results  A total of 241 women were recruited. OMs were divided in the three groups: 95 (39.5%) solid, 66 (27.5%) cystic, 80 
(33%) motley. For solid OMs, 269 radiomic features were used for the training-validation-testing of the model with accuracy 
80%, sensitivity 78%, specificity 83%, AUC 87%. For cystic OMs, 278 radiomic features were used for the training-validation-
testing of the model with accuracy 87%, sensitivity 75%, specificity 90%, AUC 88%. For mixed OMs, 306 radiomic features 
were used for the training-validation-testing of the model with accuracy 81%, sensitivity 81%, specificity 81%, AUC 89%.
Conclusion  Radiomics is a promising tool in improving preoeprative work-up of women diagnosed with OMs. Even in the 
absence of the subjective impression of expert ultrasound examiner, radiomics allows to easily identify patients with ovarian 
cancer. Future validation studies on larger series are needed.
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Introduction

Ovarian cancer (OC) is the fifth most common cancer in 
women and the most common cause of gynecologic cancer 
deaths, thus being one of the most lethal cancers in women 
[1]. It is estimated that over 22,000 new cases of OC were 
diagnosed and 14,000 women died of this disease in 2019 
only in the USA Nearly three cases out of four were diag-
nosed in the advanced stage of disease [stage IIIC or IV, 
International Federation of Gynecology and Obstetrics 
(FIGO)] at presentation [2].

The absence of valid screening and diagnostic pro-
grams and the rapid spread of disease through the peri-
toneal surface represent the main factors driving OC 
lethality. Growing evidences suggested that clinical 
examination by qualitative transvaginal ultrasound imag-
ing and CA-125 dosage—currently the available screening 
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examinations—are not enough to detect OC at the early 
stage in the general population [3] and an accurate pro-
tocol to identify high-risk patients is still lacking. Thus, 
recently, Food and Drug Administration (FDA) recom-
mended against using the currently offered tests for OC 
screening, suggesting that they might lead to non-negli-
gible inaccuracies [4]. This is of paramount importance 
especially in women diagnosed with ovarian masses 
(OMs), often detected incidentally, mostly addressed to 
surgery and frequently proven to be benign post-surgery at 
final histology analysis [5]. Therefore, the identification of 
tools for accurate screening, early diagnosis and prognosis 
of OC represents a current unmet clinical need.

Recently, radiomics emerged as a new powerful method 
able to quantify features from radiological medical images 
[6, 7] containing information that reflect the underlying 
pathophysiology of cancer tissue [8, 9]. The information 
extracted might correlate with patient clinical data, lead-
ing to the definition of radiomic biomarker profiles that can 
discriminate cancerous from non-cancerous tissues or dif-
ferent cancer subtypes. Moreover, when radiomics features 
were used to train machine learning systems to automatically 
classify tissue images in distinct groups, predictive models 
were built and proven effective in predicting diagnosis and 
also prognosis in various types of solid tumors at the level 
of single patient, representing useful decision support tools 
for personalized medicine [10]. In the present paper our aim 
is to test the performance of radiomic analysis on patients 
diagnosed with OMs. We extracted radiomic features from 
ultrasonographic images of histologically proven cancer-
ous and non-cancerous OMs, and used selected radiomics 
features to train machine learning systems to automatically 
discriminate malignant and benign OMs, not depending on 
the expertise of ultrasound examiners.

Methods

Study design and study population

This is a single center, retrospective pilot study. The study 
population includes consecutive women diagnosed with 
OMs treated at Fondazione IRCCS Istituto Nazionale dei 
Tumori di Milano from January 1, 2017 to December 31, 
2019. Every patient signed written consent for research 
purpose. Consecutive patients diagnosed with OMs and 
scheduled to have surgery were included in the study. Inclu-
sion criteria were: (i) diagnosis of OM, (ii) execution of a 
preoperative ultrasonographic examination within 2 weeks 
before surgery, (iii) surgery performed. Exclusion criteria 
were: (i) age <18 years, (ii) absence of ultrasonographic 
images stored and (iii) consent withdrawn.

Ultrasonography images and histopathological data 
of patients

We retrospectively collected all preoperative ultrasono-
graphic images of patients who underwent surgery for 
OMs. Ultrasonographic images were stored in.jpg and.
DICOM format at the time of preoperative workup. All 
patients included underwent transvaginal ultrasound even-
tually completed by transabdominal scan in case of big 
cysts not completely evaluable with transvaginal approach 
or in case of suspicion of malignancy (for further abdomi-
nal evaluation). Ultrasound examinations were carried out 
with the same system (General Electrics Voluson™ E8 
ultrasound system).

All patients included in the study underwent surgery. 
Type of surgery performed was tailored on the basis of 
patients’ and disease characteristics. Intra-operative frozen 
section was performed in all cases. In case of OC, stage 
and grading of disease were assessed according to the 
International Federation of Obstetrics and Gynecologists 
(FIGO) system [11]. Histological subtypes were reported 
according to the World Health Organization (WHO) clas-
sification [12].

To assess the efficacy of radiomics in a heterogeneous 
group of patients we categorized OMs in three homogene-
ous groups: (i) solid, (ii) cystic, and (iii) motley. The solid 
group included masses without any fluid component; while 
the cystic group included masses without any solid compo-
nent except septa (both simple and septated ovarian cysts 
were considered in this group). The motley group included 
masses with both fluid and solid components.

We then associated each OM ultrasonographic image 
to one of the two histopathological classes (malignant/
benign). In case of bilateral OMs the lesion with more 
complex ultrasound appearance (bigger and/or with larger 
solid component) was considered for the radiomic analysis.

Radiomics study

Radiomics methodology was applied to collected ultra-
sonographic images of patients, according to the Interna-
tional Biomarker Standardization Initiative (IBSI) guide-
lines (https​://arxiv​.org/abs/1612.07003​) [13].

For this purpose the TRACE4© radiomic platform was 
used (http://www.deept​racet​ech.com/files​/Techn​icalS​
heet__TRACE​4.pdf) allowing the whole IBSI-compliant 
radiomic workflow to be obtained in a full-automatic way.

IBSI radiomic workflow included: (i) the segmentation 
of the lesion region from each patient image, (ii) the pre-
processing of image content within the segmented region 
of interest for the radiomic features extraction, (iii) the 

https://arxiv.org/abs/1612.07003
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extraction of radiomic features from the segmented region 
of interest, (iv) the selection of radiomic features which 
remains stable with respect to different segmentations, 
as may occur by different examiners, and repeatable in 
test–retest study, (v) the use of such candidate radiomic 
features to train, validate, and test different systems of 
machine learning classifiers in the binary classification 
task of interest (malignant vs benign), by the reduction 

of such stable and repeatable features to not-redundant 
features, in a number that is statistically comparable with 
the number of collected images of patients.

More specifically:

(i)	 The segmentation of the OMs was performed manually, 
using the TRACE4 segmentation tool (Figs. 1, 2).

Fig. 1   Examples of manual segmentation of malignant ovarian masses: A.1 solid; A.2 motley; A.3 cystic
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(ii)	 The preprocessing of image intensities within the seg-
mented region of interest included resampling to iso-
tropic voxel spacing, using a down-sampling scheme by 
considering image slice thickness of 1 mm and inten-
sity discretization using a fixed number of 64 bins.

(iii)	 The radiomics features extracted from the segmented 
region of interest belong to different families: mor-
phology, intensity-based statistics, intensity histogram, 
gray-level co-occurrence matrix (GLCM), gray-level 
run length matrix (GLRLM), gray-level size zone 

matrix (GLSZM), neighborhood gray tone difference 
matrix (NGTDM), gray-level distance zone matrix 
(GLDZM), neighboring gray level dependence matrix 
(NGLDM). Their definition, computation and nomen-
clature are compliant with the IBSI guidelines, except 
for the features of the family morphology, originally 
designed for 3D images, which were replaced with 
ten 2D equivalent features (e.g., 3D features volume 
and surface were replaced with 2D features area and 
perimeter, respectively). Steps from (ii) to (iii) were 

Fig. 2   Examples of manual segmentation of benign ovarian masses: A.1 solid; A.2 motley; A.3 cystic
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performed using the TRACE4 Radiomics tool. Radi-
omic features were reported by TRACE4 according to 
IBSI standards.

(iv)	 The selection of radiomic features, stable with respect 
to different segmentations and repeatable in test–retest 
study, was performed by ICC (ICC > 0.80) by statisti-
cally comparing features obtained by data augmenta-
tion strategies, (a) generating random variations of the 
manual segmentation of the lesion region (performed 
by the operator), and random rotations of the original 
images and segmentations to reduce the dependency 
from the operator and to enrich the dataset, respec-
tively. The selected radiomic features (stable and 
repeatable) were reported by TRACE4.

(v)	 For each one of the three homogeneous groups of OMs 
(solid, cystic, and motley OMs), a different system of 
machine learning classifier was trained, validated, and 
tested, for the binary classification task (malignant vs 
benign, based on histopathology results), reducing the 
more stable and reproducible features to a signature of 
not redundant features proper with the number of col-
lected images.

Each of the three systems is an ensemble of 10 Support 
Vector Machines, combined with principal components anal-
ysis and fisher discriminant ratio with majority vote rule. For 
each system, nested K-fold cross validation method was used 
(K = 10). Oversampling technique for the minority class 
was applied by adaptive synthetic sampling method. Perfor-
mance of the different classification systems were measured 
across the different folds (K = 10) in terms of max and mean 
Accuracy, Sensitivity, Specificity, AUC and standard devia-
tion. Steps (iv) and (v) were performed automatically by the 
TRACE4 Modeling and Statistics tool.

Results

Ultrasonography images and histopathological data 
of patients

We retrospectively recruited 241 women with available ultra-
sonographic images of OMs and histopathological results. 
Median age was 55 (18–84) years old and median body mass 
index was 25 (16–39) kg/mq. Most of patients (76%) were 
postmenopausal. Most of patients (64%) referred symptoms 
before ultrasound: pelvic or abdominal pain (54%), bloating 
(22%), increase in abdominal circumference (16%), weight 
gain or loss (15%), weakness (15%), nausea (13%), irregular 
menstrual periods (10%), abnormal uterine bleeding (4%). 
Histological characteristics of the OMs after surgery are pre-
sented in Table 1. One hundred patients (87%) with benign 

pathology at final histology underwent laparoscopic sur-
gery; 15 patients (13%) underwent open surgery because of 
dimension of OM or suspect of malignancy at preoperative 
workup. Among patients with malignant disease, 82 patients 
(65%) had open surgery with surgical staging in case of early 
stages and optimal cytoreduction in case of advanced stages; 
44 patients (35%) had laparoscopy because of preoperative 
suspect of borderline tumors or advanced stages without 
possibility to reach complete cytoreduction at preoperative 
imaging (in this last case, patients underwent multiple lapa-
roscopic biopsies followed by neoadjuvant chemotherapy).

According to the setting designed for radiomics analysis, 
the benign/malignant distribution and characteristics of the 
three groups of OMs are summarized in Table 2.

Radiomics study

Three hundred and nineteen radiomics IBSI-compliant 
features were extracted from segmented OMs (see Online 
Appendix A for a representative patient).

For the first classification task (solid malignant vs benign 
OMs), 269 radiomics features were found stable with respect 
to different examiners and to test–retest study (ICC > 0.8) 
(Online Appendix B1). These features were used for the 
training-validation-testing (nested tenfold validation) of the 
first ensemble of support vector machines. Accuracy, Sen-
sitivity, Specificity and AUC of such classifier are shown 
in Table 3.

For the second classification task (cystic malignant vs 
benign OMs), 278 radiomics features were found stable 
with respect to different examiners and to test–retest study 
(ICC > 0.8) (Online Appendix B2). These features were used 
for the training-validation-testing (nested tenfold validation) 
of the first ensemble of support vector machines. Accuracy, 
sensitivity, specificity and AUC of such classifier are shown 
in Table 3.

For the third classification task (motley malignant vs 
benign OMs), 306 radiomics features were found stable 
with respect to different examiners and to test–retest study 
(ICC > 0.8) (Online Appendix B3). These features were used 
for the training-validation-testing (nested tenfold validation) 
of the first ensemble of support vector machines. Accuracy, 
sensitivity, specificity and AUC of such classifier are shown 
in Table 3.

Discussion

The present study investigated if the adoption of radiomics 
could be useful in improving diagnostic work-up of women 
diagnosed with OM and if, even in absence of the subjective 
impression of expert ultrasound examiner, radiomics could 
allow to easily identify patients with OC.
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Several investigations tried to identify possible hallmarks 
for the characterization of patients diagnosed with OM [14, 
15], however, no objective parameters work better than the 
subjective impression of an expert ultrasound examiner [16].

In this study we applied radiomics features to ultrasono-
graphic preoperative images of OMs to build a predictive 

model to select malignant lesions that should be referred 
to an oncological center. The performance of our predic-
tive models was >80%, thus suggesting the application of 
radiomics to ultrasonography to improve the diagnosis of 
OC. Moreover, the main advantage of our model is that it is 
not dependent on the experience of the ultrasound examiner 

Table 1   Histopathological 
characteristics of ovarian 
masses included in the study

Results are presented as n (%)

Variable Ovarian masses (n = 241)

Benign 115 (48)
Malignant 126 (52)
Histological type of benign masses: n = 115 (100)
 Serous cystoadenoma/cystoadenofibroma 45 (39)
 Mucinous cystoadenoma 8 (7)
 Endometrioma 7 (6)
 Ovarian fibroma/fibrothecoma 36 (31)
 Teratoma 3 (3)
 PID 2 (2)
 Peritoneal cyst/pseudocysts 2 (2)
 Hidrosalpinx 7 (6)
 Paraovarian cyst/paratubaric cyst 5 (4)

Histological type of malignant tumors: n = 126 (100)
 High grade serous ovarian cancer (HGSOC) 53 (42)
 Low grade serous ovarian cancer (LGSOC) 5 (4)
 Serous borderline tumor 12 (10)
 Mucinous borderline tumor gastrointestinal type 7 (6)
 Mucinous borderline tumor endocervical type 5 (4)
 Mucinous ovarian cancer 2 (2)
 Endometrioid ovarian cancer 3 (2)
 Clear cell ovarian cancer 3 (2)
 Granulosa cell ovarian tumor 3 (2)
 Dysgerminoma 1 (1)
 Ovarian metastases from other tumors 20 (16)
 Tubal cancer 1 (1)
 Yolk sac tumor 3 (2)
 Ovarian carcinosarcoma 5 (4)
 Sertoli Leydig tumor 3 (2)

FIGO stage of primitive ovarian cancers: n = 106 (100)
 IA 21 (19)
 IB 1 (1)
 IC1 4 (4)
 IC2 1 (1)
 IC3 4 (4)
 IIA 3 (3)
 IIB 6 (6)
 IIIA1 6 (6)
 IIIA2 1 (1)
 IIIB 9 (8)
 IIIC 33 (31)
 IVA 5 (5)
 IVB 12 (11)
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except for the categorization of OMs as solid, cystic and 
motley; the examiner stored the ultrasonographic image of 
a single patient in DICOM format, sent the image to the 
TRACE4 software platform and received a probability of 
classification as “benign” or “malignant” as support to his/
her diagnosis.

To the best of our knowledge this is the first study to 
apply radiomics according to IBSI guidelines and machine 
learning to ultrasonographic images in gynecology to define 
the risk of malignancy of OMs.

Few Authors proposed different approaches to automati-
cally identify the presence of ovarian cancer tissue analyzing 
texture parameters on 2D [17–19] and 3D [20] ultrasono-
graphic images with promising results.

Similar experiences have been recently described in liter-
ature applied to hepatocellular carcinoma ultrasound images 
[21] where the authors concluded that radiomics could help 
in liver tumor evaluations, including diagnosis, differential 
diagnosis, and clinical prognosis. The most important expe-
riences in literature described radiomics applied to MRI, 
PET/CT or CT-scan; a few studies have been conducted in 
patients with adnexal lesions with different purposes: to cat-
egorize ovarian masses (benign/malignant and in case of 
malignant type I/type II ovarian tumors) [22] and to relate 
tumor heterogeneity to prognosis and risk or recurrence 
[23–26].

A strength of our study is the radiomic analysis according 
to IBSI guidelines, that allows better comparison with fur-
ther analysis by other research groups. Moreover, we were 
able to correlate radiomics features with histologic speci-
men, allowing the development of artificial intelligence (AI) 
models predictive of the risk of malignancy based on the 
sole in vivo measurement of radiomic features. Another 

strength point is the number of cases available for radiom-
ics analysis and to develop the models (241), allowing the 
use of k-fold cross validation to properly train, validate and 
test the AI models on separate folds of image cases.

However, our work has some limitations, in particular 
the manual segmentation of the lesions, impacting on the 
work of clinicians and potentially including a certain per-
centage of intrinsic error. An advantage over the segmenta-
tion offered by the TRACE4 platform is that the selected 
features are independent of the contour traced by the opera-
tor because this contour is manipulated by TRACE4 func-
tions with a multiplicity of small variations (small random 
deformations) that generate as many contours as if they were 
traced by a multiplicity of operators. The TRACE4 platform 
selects stable radiomic features with respect to these differ-
ent contours.

The main weakness of the study is related to the inherit 
biases of the retrospective, single center—single ultrasono-
graphic system study design. Additionally, another possible 
limitation of our study is the limited sample size for some 
subgroups of lesions due to the rarity of diseases (malignant 
cystic lesions and benign motley lesions), but this is a pilot 
study to build a predictive model that will need to be vali-
dated on larger series.

Nowadays, transvaginal ultrasound represents the first-
choice imaging technique to approach the female pelvis, and 
it’s widely used to complete clinical examination even in an 
office setting by non-experienced examiners who often are 
not able to categorize incidental OMs.

Compared to the other models described in literature, our 
model has the advantage to be not dependent by the experi-
ence of the examiner, requiring very few skills including 
image manual segmentation.

The most important score actually in use to categorize 
OMs is ADNEX [27–29], built and validated by Interna-
tional Ovarian Tumor Analysis (IOTA) group. This is a very 
useful model because it defines not only the risk of malig-
nancy with a performance similar to the subjective impres-
sion of the experienced ultrasound examiner, but also strati-
fies the risk of the OM to be a borderline tumor, an early or 
advanced ovarian cancer or a metastasis; on the other side, 
the variables used to calculate the risk according to ADNEX 

Table 2   Ultrasonographic and 
biochemical characteristics of 
ovarian masses (OMs)

Group 1, solid OMs 
(n = 95)

Group 2, cystic OMs 
(n = 66)

Group 3, motley OMs 
(n = 80)

Benign Malignant Benign Malignant Benign Malignant

N (%) 38 (40) 57 (60) 53 (80) 13 (20) 24 (30) 56 (70)
Median max diameter (mm) 46 54 44 103 49 82
Bilateral lesions, n (%) 3 (8) 18 (32) 5 (9) 1 (8) 2 (8) 24 (43)
Ascites, n (%) 3 (8) 17 (30) 0 (0) 3 (23) 0 (0) 8 (14)
Median Ca125 17 274 12 92 11 40

Table 3   Performances of the classifier trained on malignant vs benign 
ovarian masses in solid, cystic and motley group

Accuracy Sensitivity Specificity AUC​

SOLID OMs 0.80 ± 0.02 0.78 ± 0.02 0.83 ± 0.03 0.87 ± 0.01
CYSTIC OMs 0.87 ± 0.03 0.75 ± 0.06 0.9 ± 0.02 0.88 ± 0.04
MOTLEY OMs 0.81 ± 0.02 0.81 ± 0.02 0.81 ± 0.02 0.89 ± 0.02
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assume that the examiner knows at least IOTA terminology 
[30] and it requires a minimum of experience to correctly 
apply the terminology and run the algorithm.

ADNEX provides a percentage of risk of malignancy that 
needs a further interpretation to define the management of 
the lesion and the performance of the model changes accord-
ing to chosen cut-off to define malignancy; for the most used 
cut off of 10% the model shows a sensitivity of 96.5% and 
a specificity of 71.3%. External validations of the model 
showed similar results to the original paper [31, 32].

To apply our model, the examiner should only define 
the OM as solid, cystic or motley and trace the outline of 
the lesion, without any other info required, thus allowing a 
wide possibility of applications, even by basic ultrasound 
examiners. A further advantage of our model is to elimi-
nate uncertainty thus providing the classification of the OM 
into benign/malignant and not an estimation of the risk of 
malignancy which needs interpretation to drive the subse-
quent management; this could facilitate the application of 
the model in a basic setting to select patients for second level 
evaluation and referral to oncological center.

Our future perspectives are to optimize the model, avoid-
ing the division of the OMs into the three groups by the 
examiners, thus building a unique model where the software 
automatically recognizes the type of mass, that could be 
embedded into ultrasound machines allowing an immediate 
real time classification of ovarian lesions.
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